37edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 36edt 37edt 38edt →
Prime factorization 37 (prime)
Step size 51.4042¢ 
Octave 23\37edt (1182.3¢)
Consistency limit 2
Distinct consistency limit 2

37EDT is the equal division of the third harmonic into 37 parts of 51.4042 cents each, corresponding to 23.4355 edo. The tunings supplied by 111EDT (or 70edo) cannot be used for all low-limit just intervals, but they can be used on the 17-limit 8.3.100.70.22.52.68 just intonation subgroup, tempering out 289/288, 325/324, 352/351, 385/384, 561/560, 595/594, 625/624, 676/675, 1089/1088, 1156/1155, 1225/1224, and 1331/1326.

Harmonics

Approximation of prime harmonics in 37edt
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -17.7 +0.0 -10.5 +23.9 +12.4 -19.8 -21.6 -8.5 +20.6 -20.9 +17.9
Relative (%) -34.4 +0.0 -20.4 +46.4 +24.2 -38.5 -41.9 -16.5 +40.0 -40.7 +34.7
Steps
(reduced)
23
(23)
37
(0)
54
(17)
66
(29)
81
(7)
86
(12)
95
(21)
99
(25)
106
(32)
113
(2)
116
(5)
Approximation of prime harmonics in 37edt
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +20.0 -3.5 +16.8 +17.0 +14.7 -16.8 -23.1 +20.1 +22.5 -25.6 -8.1
Relative (%) +38.8 -6.9 +32.7 +33.1 +28.5 -32.7 -45.0 +39.1 +43.8 -49.8 -15.8
Steps
(reduced)
122
(11)
125
(14)
127
(16)
130
(19)
134
(23)
137
(26)
138
(27)
142
(31)
144
(33)
144
(33)
147
(36)

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 51.4
2 102.8 18/17
3 154.2 23/21
4 205.6
5 257 22/19, 29/25
6 308.4 6/5
7 359.8 27/22
8 411.2 14/11, 19/15
9 462.6 17/13
10 514
11 565.4 18/13, 25/18
12 616.9
13 668.3 22/15, 25/17, 28/19
14 719.7
15 771.1 14/9
16 822.5 29/18
17 873.9
18 925.3 17/10, 29/17
19 976.7
20 1028.1
21 1079.5 28/15
22 1130.9 25/13, 27/14
23 1182.3
24 1233.7
25 1285.1
26 1336.5 13/6
27 1387.9 29/13
28 1439.3
29 1490.7
30 1542.1 22/9
31 1593.5 5/2
32 1644.9
33 1696.3
34 1747.7
35 1799.1 17/6
36 1850.6 29/10
37 1902 3/1