38edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 37edt38edt39edt →
Prime factorization 2 × 19
Step size 50.0514¢ 
Octave 24\38edt (1201.23¢) (→12\19edt)
Consistency limit 5
Distinct consistency limit 5

Division of the third harmonic into 38 equal parts (38EDT) is related to 24 edo (quarter-tone tuning), but with the 3/1 rather than the 2/1 being just. The octave is about 1.2347 cents stretched and the step size is about 50.0514 cents. It is consistent to the 6-integer-limit.

Lookalikes: 24edo, 56ed5, 62ed6, 14edf

Harmonics

Approximation of harmonics in 38edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +1.2 +0.0 +2.5 +16.6 +1.2 -15.4 +3.7 +0.0 +17.8 +3.0 +2.5
Relative (%) +2.5 +0.0 +4.9 +33.1 +2.5 -30.7 +7.4 +0.0 +35.6 +5.9 +4.9
Steps
(reduced)
24
(24)
38
(0)
48
(10)
56
(18)
62
(24)
67
(29)
72
(34)
76
(0)
80
(4)
83
(7)
86
(10)
Approximation of harmonics in 38edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +14.1 -14.1 +16.6 +4.9 +0.1 +1.2 +7.7 +19.0 -15.4 +4.2 -22.7
Relative (%) +28.1 -28.3 +33.1 +9.9 +0.2 +2.5 +15.5 +38.0 -30.7 +8.4 -45.4
Steps
(reduced)
89
(13)
91
(15)
94
(18)
96
(20)
98
(22)
100
(24)
102
(26)
104
(28)
105
(29)
107
(31)
108
(32)

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 50.051
2 100.103 17/16, 18/17, 19/18
3 150.154 12/11, 23/21
4 200.206 9/8, 19/17
5 250.257 15/13, 22/19
6 300.309 19/16
7 350.36 11/9, 27/22
8 400.412 24/19, 29/23
9 450.463 13/10, 22/17
10 500.514 4/3
11 550.566 11/8, 26/19
12 600.617 17/12, 24/17
13 650.669 16/11, 19/13
14 700.72 3/2
15 750.772 17/11, 20/13
16 800.823 19/12, 27/17
17 850.875 18/11
18 900.926 27/16
19 950.978 19/11, 26/15
20 1001.029 16/9
21 1051.08 11/6
22 1101.132 17/9
23 1151.183
24 1201.235 2/1
25 1251.286
26 1301.338 17/8
27 1351.389 24/11
28 1401.441 9/4
29 1451.492
30 1501.543 19/8
31 1551.595 22/9, 27/11
32 1601.646
33 1651.698 13/5
34 1701.749 8/3
35 1751.801 11/4
36 1801.852 17/6
37 1851.904
38 1901.955 3/1