38edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 37edt 38edt 39edt →
Prime factorization 2 × 19
Step size 50.0514¢ 
Octave 24\38edt (1201.23¢) (→12\19edt)
Consistency limit 5
Distinct consistency limit 5

Division of the third harmonic into 38 equal parts (38EDT) is related to 24 edo (quarter-tone tuning), but with the 3/1 rather than the 2/1 being just. The octave is about 1.2347 cents stretched and the step size is about 50.0514 cents. It is consistent to the 6-integer-limit.

Lookalikes: 24edo, 56ed5, 62ed6, 14edf

Harmonics

Approximation of harmonics in 38edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +1.2 +0.0 +2.5 +16.6 +1.2 -15.4 +3.7 +0.0 +17.8 +3.0 +2.5
Relative (%) +2.5 +0.0 +4.9 +33.1 +2.5 -30.7 +7.4 +0.0 +35.6 +5.9 +4.9
Steps
(reduced)
24
(24)
38
(0)
48
(10)
56
(18)
62
(24)
67
(29)
72
(34)
76
(0)
80
(4)
83
(7)
86
(10)
Approximation of harmonics in 38edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +14.1 -14.1 +16.6 +4.9 +0.1 +1.2 +7.7 +19.0 -15.4 +4.2 -22.7
Relative (%) +28.1 -28.3 +33.1 +9.9 +0.2 +2.5 +15.5 +38.0 -30.7 +8.4 -45.4
Steps
(reduced)
89
(13)
91
(15)
94
(18)
96
(20)
98
(22)
100
(24)
102
(26)
104
(28)
105
(29)
107
(31)
108
(32)

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 50.1
2 100.1 17/16, 18/17, 19/18
3 150.2 12/11, 23/21
4 200.2 9/8, 19/17
5 250.3 15/13, 22/19
6 300.3 19/16
7 350.4 11/9, 27/22
8 400.4 24/19, 29/23
9 450.5 13/10, 22/17
10 500.5 4/3
11 550.6 11/8, 26/19
12 600.6 17/12, 24/17
13 650.7 16/11, 19/13
14 700.7 3/2
15 750.8 17/11, 20/13
16 800.8 19/12, 27/17
17 850.9 18/11
18 900.9 27/16
19 951 19/11, 26/15
20 1001 16/9
21 1051.1 11/6
22 1101.1 17/9
23 1151.2
24 1201.2 2/1
25 1251.3
26 1301.3 17/8
27 1351.4 24/11
28 1401.4 9/4
29 1451.5
30 1501.5 19/8
31 1551.6 22/9, 27/11
32 1601.6
33 1651.7 13/5
34 1701.7 8/3
35 1751.8 11/4
36 1801.9 17/6
37 1851.9
38 1902 3/1


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.