38edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 37edt 38edt 39edt →
Prime factorization 2 × 19
Step size 50.0514¢ 
Octave 24\38edt (1201.23¢) (→12\19edt)
Consistency limit 5
Distinct consistency limit 5

38 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 38edt or 38ed3), is a nonoctave tuning system that divides the interval of 3/1 into 38 equal parts of about 50.1⁠ ⁠¢ each. Each step represents a frequency ratio of 31/38, or the 38th root of 3.

38EDT is related to 24edo (quarter-tone tuning), but with the 3/1 rather than the 2/1 being just, which stretches the octave by about 1.2347 cents. It is consistent to the 6-integer-limit.

Lookalikes: 14edf, 24edo, 56ed5, 62ed6

Harmonics

Approximation of harmonics in 38edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +1.2 +0.0 +2.5 +16.6 +1.2 -15.4 +3.7 +0.0 +17.8 +3.0 +2.5
Relative (%) +2.5 +0.0 +4.9 +33.1 +2.5 -30.7 +7.4 +0.0 +35.6 +5.9 +4.9
Steps
(reduced)
24
(24)
38
(0)
48
(10)
56
(18)
62
(24)
67
(29)
72
(34)
76
(0)
80
(4)
83
(7)
86
(10)
Approximation of harmonics in 38edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +14.1 -14.1 +16.6 +4.9 +0.1 +1.2 +7.7 +19.0 -15.4 +4.2 -22.7
Relative (%) +28.1 -28.3 +33.1 +9.9 +0.2 +2.5 +15.5 +38.0 -30.7 +8.4 -45.4
Steps
(reduced)
89
(13)
91
(15)
94
(18)
96
(20)
98
(22)
100
(24)
102
(26)
104
(28)
105
(29)
107
(31)
108
(32)

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 50.1 34.2
2 100.1 68.4 17/16, 18/17, 19/18
3 150.2 102.6 12/11, 23/21
4 200.2 136.8 9/8, 19/17
5 250.3 171.1 15/13, 22/19
6 300.3 205.3 19/16
7 350.4 239.5 11/9, 27/22
8 400.4 273.7 24/19, 29/23
9 450.5 307.9 13/10, 22/17
10 500.5 342.1 4/3
11 550.6 376.3 11/8, 26/19
12 600.6 410.5 17/12, 24/17
13 650.7 444.7 16/11, 19/13
14 700.7 478.9 3/2
15 750.8 513.2 17/11, 20/13
16 800.8 547.4 19/12, 27/17
17 850.9 581.6 18/11
18 900.9 615.8 27/16
19 951 650 19/11, 26/15
20 1001 684.2 16/9
21 1051.1 718.4 11/6
22 1101.1 752.6 17/9
23 1151.2 786.8
24 1201.2 821.1 2/1
25 1251.3 855.3
26 1301.3 889.5 17/8
27 1351.4 923.7 24/11
28 1401.4 957.9 9/4
29 1451.5 992.1
30 1501.5 1026.3 19/8
31 1551.6 1060.5 22/9, 27/11
32 1601.6 1094.7
33 1651.7 1128.9 13/5
34 1701.7 1163.2 8/3
35 1751.8 1197.4 11/4
36 1801.9 1231.6 17/6
37 1851.9 1265.8
38 1902 1300 3/1


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.