56ed5
Jump to navigation
Jump to search
Prime factorization
23 × 7
Step size
49.7556¢
Octave
24\56ed5 (1194.13¢) (→3\7ed5)
Twelfth
38\56ed5 (1890.71¢) (→19\28ed5)
Consistency limit
6
Distinct consistency limit
6
← 55ed5 | 56ed5 | 57ed5 → |
Division of the 5th harmonic into 56 equal parts (56ed5) is related to 24 edo, but with the 5/1 rather than the 2/1 being just. The octave is about 5.8656 cents compressed and the step size is about 49.7556 cents. This tuning has a meantone fifth as the number of divisions of the 5th harmonic is multiple of 4. This tuning is also a hyperpyth, tempering out 135/133, 171/169, 225/221, and 1521/1445 in the patent val.
Intervals
degree | cents value | corresponding JI intervals |
comments |
---|---|---|---|
0 | 0.0000 | exact 1/1 | |
1 | 49.7556 | 36/35, 35/34 | |
2 | 99.5112 | 18/17 | |
3 | 149.2668 | 12/11 | |
4 | 199.0224 | 55/49 | |
5 | 248.7780 | 15/13 | |
6 | 298.5336 | 19/16 | |
7 | 348.2892 | 11/9 | |
8 | 398.0448 | 34/27 | pseudo-5/4 |
9 | 447.8004 | 35/27 | |
10 | 497.5560 | 4/3 | |
11 | 547.3116 | 70/51 | |
12 | 597.0672 | 24/17 | |
13 | 646.8228 | ||
14 | 696.5784 | meantone fifth (pseudo-3/2) | |
15 | 746.3340 | 20/13 | |
16 | 796.0896 | 19/12 | |
17 | 845.8452 | 44/27, 75/46 | |
18 | 895.6008 | 57/34 | pseudo-5/3 |
19 | 945.3564 | 19/11 | |
20 | 995.1120 | 16/9 | pseudo-9/5 |
21 | 1044.8676 | 64/35 | |
22 | 1094.6232 | 32/17 | |
23 | 1144.3788 | ||
24 | 1194.1344 | 255/128 | pseudo-octave |
25 | 1243.8901 | 80/39, 39/19 | |
26 | 1293.6457 | 19/9 | |
27 | 1343.4013 | 50/23 | |
28 | 1393.1569 | 38/17, 85/38 | meantone major second plus an octave |
29 | 1442.9125 | 23/10 | |
30 | 1492.6681 | 45/19 | |
31 | 1542.4237 | 39/16 | |
32 | 1592.1793 | 128/51 | pseudo-5/2 |
33 | 1641.9349 | pseudo-13/5 | |
34 | 1691.6905 | 85/32 | |
35 | 1741.4461 | 175/64 | |
36 | 1791.2017 | 45/16 | |
37 | 1840.9573 | 55/19 | |
38 | 1890.7129 | 170/57 | pseudo-3/1 |
39 | 1940.4685 | 46/15, 135/44 | |
40 | 1990.2241 | 60/19 | |
41 | 2039.9797 | 13/4 | |
42 | 2089.7353 | meantone major sixth plus an octave (pseudo-10/3) | |
43 | 2139.4909 | pseudo-17/5 | |
44 | 2189.2465 | 85/24 | |
45 | 2239.0021 | 51/14 | |
46 | 2288.7577 | 15/4 | pseudo-19/5 |
47 | 2338.5133 | 27/7 | |
48 | 2388.2689 | 135/34 | pseudo-4/1 |
49 | 2438.0245 | 45/11 | |
50 | 2487.7801 | 80/19 | pseudo-21/5 |
51 | 2537.5357 | 13/3 | |
52 | 2587.2913 | 49/11 | |
53 | 2637.0469 | 55/12 | |
54 | 2686.8025 | 85/18 | |
55 | 2736.5581 | 34/7 | |
56 | 2786.3137 | exact 5/1 | just major third plus two octaves |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -5.9 | -11.2 | -11.7 | +0.0 | -17.1 | +14.6 | -17.6 | -22.5 | -5.9 | -21.6 | -23.0 |
Relative (%) | -11.8 | -22.6 | -23.6 | +0.0 | -34.4 | +29.3 | -35.4 | -45.2 | -11.8 | -43.4 | -46.2 | |
Steps (reduced) |
24 (24) |
38 (38) |
48 (48) |
56 (0) |
62 (6) |
68 (12) |
72 (16) |
76 (20) |
80 (24) |
83 (27) |
86 (30) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -12.3 | +8.7 | -11.2 | -23.5 | +20.8 | +21.4 | -22.4 | -11.7 | +3.3 | +22.3 | -4.9 |
Relative (%) | -24.7 | +17.5 | -22.6 | -47.2 | +41.9 | +43.0 | -45.1 | -23.6 | +6.7 | +44.8 | -9.9 | |
Steps (reduced) |
89 (33) |
92 (36) |
94 (38) |
96 (40) |
99 (43) |
101 (45) |
102 (46) |
104 (48) |
106 (50) |
108 (52) |
109 (53) |