56ed5

From Xenharmonic Wiki
Jump to navigation Jump to search
← 55ed556ed557ed5 →
Prime factorization 23 × 7
Step size 49.7556¢ 
Octave 24\56ed5 (1194.13¢) (→3\7ed5)
Twelfth 38\56ed5 (1890.71¢) (→19\28ed5)
Consistency limit 6
Distinct consistency limit 6

Division of the 5th harmonic into 56 equal parts (56ed5) is related to 24 edo, but with the 5/1 rather than the 2/1 being just. The octave is about 5.8656 cents compressed and the step size is about 49.7556 cents. This tuning has a meantone fifth as the number of divisions of the 5th harmonic is multiple of 4. This tuning is also a hyperpyth, tempering out 135/133, 171/169, 225/221, and 1521/1445 in the patent val.

Intervals

degree cents value corresponding
JI intervals
comments
0 0.0000 exact 1/1
1 49.7556 36/35, 35/34
2 99.5112 18/17
3 149.2668 12/11
4 199.0224 55/49
5 248.7780 15/13
6 298.5336 19/16
7 348.2892 11/9
8 398.0448 34/27 pseudo-5/4
9 447.8004 35/27
10 497.5560 4/3
11 547.3116 70/51
12 597.0672 24/17
13 646.8228
14 696.5784 meantone fifth
(pseudo-3/2)
15 746.3340 20/13
16 796.0896 19/12
17 845.8452 44/27, 75/46
18 895.6008 57/34 pseudo-5/3
19 945.3564 19/11
20 995.1120 16/9 pseudo-9/5
21 1044.8676 64/35
22 1094.6232 32/17
23 1144.3788
24 1194.1344 255/128 pseudo-octave
25 1243.8901 80/39, 39/19
26 1293.6457 19/9
27 1343.4013 50/23
28 1393.1569 38/17, 85/38 meantone major second plus an octave
29 1442.9125 23/10
30 1492.6681 45/19
31 1542.4237 39/16
32 1592.1793 128/51 pseudo-5/2
33 1641.9349 pseudo-13/5
34 1691.6905 85/32
35 1741.4461 175/64
36 1791.2017 45/16
37 1840.9573 55/19
38 1890.7129 170/57 pseudo-3/1
39 1940.4685 46/15, 135/44
40 1990.2241 60/19
41 2039.9797 13/4
42 2089.7353 meantone major sixth plus an octave
(pseudo-10/3)
43 2139.4909 pseudo-17/5
44 2189.2465 85/24
45 2239.0021 51/14
46 2288.7577 15/4 pseudo-19/5
47 2338.5133 27/7
48 2388.2689 135/34 pseudo-4/1
49 2438.0245 45/11
50 2487.7801 80/19 pseudo-21/5
51 2537.5357 13/3
52 2587.2913 49/11
53 2637.0469 55/12
54 2686.8025 85/18
55 2736.5581 34/7
56 2786.3137 exact 5/1 just major third plus two octaves

Harmonics

Approximation of harmonics in 56ed5
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -5.9 -11.2 -11.7 +0.0 -17.1 +14.6 -17.6 -22.5 -5.9 -21.6 -23.0
Relative (%) -11.8 -22.6 -23.6 +0.0 -34.4 +29.3 -35.4 -45.2 -11.8 -43.4 -46.2
Steps
(reduced)
24
(24)
38
(38)
48
(48)
56
(0)
62
(6)
68
(12)
72
(16)
76
(20)
80
(24)
83
(27)
86
(30)
Approximation of harmonics in 56ed5
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -12.3 +8.7 -11.2 -23.5 +20.8 +21.4 -22.4 -11.7 +3.3 +22.3 -4.9
Relative (%) -24.7 +17.5 -22.6 -47.2 +41.9 +43.0 -45.1 -23.6 +6.7 +44.8 -9.9
Steps
(reduced)
89
(33)
92
(36)
94
(38)
96
(40)
99
(43)
101
(45)
102
(46)
104
(48)
106
(50)
108
(52)
109
(53)