57ed5
Jump to navigation
Jump to search
Prime factorization
3 × 19
Step size
48.8827¢
Octave
25\57ed5 (1222.07¢)
Twelfth
39\57ed5 (1906.43¢) (→13\19ed5)
Consistency limit
3
Distinct consistency limit
3
← 56ed5 | 57ed5 | 58ed5 → |
57 equal divisions of the 5th harmonic (abbreviated 57ed5) is a nonoctave tuning system that divides the interval of 5/1 into 57 equal parts of about 48.9 ¢ each. Each step represents a frequency ratio of 51/57, or the 57th root of 5.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 48.9 | 34/33 |
2 | 97.8 | |
3 | 146.6 | 25/23 |
4 | 195.5 | 19/17 |
5 | 244.4 | 15/13 |
6 | 293.3 | 13/11 |
7 | 342.2 | |
8 | 391.1 | |
9 | 439.9 | |
10 | 488.8 | |
11 | 537.7 | 15/11 |
12 | 586.6 | 7/5 |
13 | 635.5 | 13/9 |
14 | 684.4 | |
15 | 733.2 | 29/19 |
16 | 782.1 | 11/7 |
17 | 831 | 21/13, 34/21 |
18 | 879.9 | 5/3 |
19 | 928.8 | 29/17 |
20 | 977.7 | |
21 | 1026.5 | |
22 | 1075.4 | 13/7 |
23 | 1124.3 | |
24 | 1173.2 | |
25 | 1222.1 | |
26 | 1271 | |
27 | 1319.8 | 15/7 |
28 | 1368.7 | 11/5 |
29 | 1417.6 | 25/11, 34/15 |
30 | 1466.5 | 7/3 |
31 | 1515.4 | |
32 | 1564.2 | |
33 | 1613.1 | 33/13 |
34 | 1662 | 34/13 |
35 | 1710.9 | |
36 | 1759.8 | |
37 | 1808.7 | |
38 | 1857.5 | |
39 | 1906.4 | 3/1 |
40 | 1955.3 | 31/10, 34/11 |
41 | 2004.2 | |
42 | 2053.1 | |
43 | 2102 | |
44 | 2150.8 | |
45 | 2199.7 | 25/7 |
46 | 2248.6 | 11/3 |
47 | 2297.5 | 34/9 |
48 | 2346.4 | |
49 | 2395.3 | |
50 | 2444.1 | |
51 | 2493 | |
52 | 2541.9 | 13/3 |
53 | 2590.8 | |
54 | 2639.7 | 23/5 |
55 | 2688.5 | 33/7 |
56 | 2737.4 | 34/7 |
57 | 2786.3 | 5/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +22.1 | +4.5 | -4.7 | +0.0 | -22.3 | +4.1 | +17.3 | +8.9 | +22.1 | +3.7 | -0.3 |
Relative (%) | +45.1 | +9.1 | -9.7 | +0.0 | -45.7 | +8.3 | +35.4 | +18.3 | +45.1 | +7.6 | -0.6 | |
Steps (reduced) |
25 (25) |
39 (39) |
49 (49) |
57 (0) |
63 (6) |
69 (12) |
74 (17) |
78 (21) |
82 (25) |
85 (28) |
88 (31) |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |