106edt
Jump to navigation
Jump to search
Prime factorization
2 × 53
Step size
17.943¢
Octave
67\106edt (1202.18¢)
Consistency limit
4
Distinct consistency limit
4
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 105edt | 106edt | 107edt → |
106 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 106edt or 106ed3), is a nonoctave tuning system that divides the interval of 3/1 into 106 equal parts of about 17.9 ¢ each. Each step represents a frequency ratio of 31/106, or the 106th root of 3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 17.9 | |
2 | 35.9 | |
3 | 53.8 | 34/33 |
4 | 71.8 | 24/23 |
5 | 89.7 | 20/19, 39/37 |
6 | 107.7 | 33/31 |
7 | 125.6 | 29/27, 43/40 |
8 | 143.5 | 38/35 |
9 | 161.5 | 34/31, 45/41 |
10 | 179.4 | 41/37 |
11 | 197.4 | 37/33 |
12 | 215.3 | 17/15, 43/38 |
13 | 233.3 | 8/7 |
14 | 251.2 | |
15 | 269.1 | 7/6 |
16 | 287.1 | 13/11 |
17 | 305 | 31/26, 37/31 |
18 | 323 | 41/34 |
19 | 340.9 | 28/23, 45/37 |
20 | 358.9 | |
21 | 376.8 | 41/33 |
22 | 394.7 | 44/35 |
23 | 412.7 | 33/26 |
24 | 430.6 | |
25 | 448.6 | 22/17, 35/27 |
26 | 466.5 | 17/13, 38/29 |
27 | 484.5 | 41/31, 45/34 |
28 | 502.4 | |
29 | 520.3 | 27/20 |
30 | 538.3 | 15/11 |
31 | 556.2 | 40/29 |
32 | 574.2 | |
33 | 592.1 | 31/22, 38/27 |
34 | 610.1 | 27/19, 37/26 |
35 | 628 | 23/16 |
36 | 645.9 | 45/31 |
37 | 663.9 | 22/15 |
38 | 681.8 | 40/27, 43/29 |
39 | 699.8 | 3/2 |
40 | 717.7 | |
41 | 735.7 | 26/17 |
42 | 753.6 | 17/11 |
43 | 771.5 | 39/25 |
44 | 789.5 | 30/19, 41/26 |
45 | 807.4 | 43/27 |
46 | 825.4 | 29/18 |
47 | 843.3 | 44/27 |
48 | 861.3 | 23/14 |
49 | 879.2 | |
50 | 897.1 | |
51 | 915.1 | |
52 | 933 | 12/7 |
53 | 951 | 26/15, 45/26 |
54 | 968.9 | 7/4 |
55 | 986.9 | |
56 | 1004.8 | |
57 | 1022.7 | |
58 | 1040.7 | 31/17, 42/23 |
59 | 1058.6 | 35/19 |
60 | 1076.6 | 41/22 |
61 | 1094.5 | |
62 | 1112.5 | 19/10 |
63 | 1130.4 | 25/13 |
64 | 1148.4 | 33/17 |
65 | 1166.3 | |
66 | 1184.2 | |
67 | 1202.2 | 2/1 |
68 | 1220.1 | |
69 | 1238.1 | 45/22 |
70 | 1256 | 31/15 |
71 | 1274 | |
72 | 1291.9 | 19/9 |
73 | 1309.8 | |
74 | 1327.8 | |
75 | 1345.7 | 37/17 |
76 | 1363.7 | 11/5 |
77 | 1381.6 | 20/9 |
78 | 1399.6 | |
79 | 1417.5 | 34/15 |
80 | 1435.4 | 39/17 |
81 | 1453.4 | 44/19 |
82 | 1471.3 | |
83 | 1489.3 | 26/11 |
84 | 1507.2 | 43/18 |
85 | 1525.2 | 41/17 |
86 | 1543.1 | |
87 | 1561 | 37/15 |
88 | 1579 | |
89 | 1596.9 | |
90 | 1614.9 | 33/13 |
91 | 1632.8 | 18/7 |
92 | 1650.8 | |
93 | 1668.7 | 21/8 |
94 | 1686.6 | 45/17 |
95 | 1704.6 | |
96 | 1722.5 | |
97 | 1740.5 | 41/15 |
98 | 1758.4 | |
99 | 1776.4 | |
100 | 1794.3 | 31/11 |
101 | 1812.2 | 37/13 |
102 | 1830.2 | 23/8 |
103 | 1848.1 | |
104 | 1866.1 | |
105 | 1884 | |
106 | 1902 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.18 | +0.00 | +4.36 | -5.15 | +2.18 | +4.45 | +6.54 | +0.00 | -2.97 | -6.49 | +4.36 |
Relative (%) | +12.1 | +0.0 | +24.3 | -28.7 | +12.1 | +24.8 | +36.4 | +0.0 | -16.6 | -36.2 | +24.3 | |
Steps (reduced) |
67 (67) |
106 (0) |
134 (28) |
155 (49) |
173 (67) |
188 (82) |
201 (95) |
212 (0) |
222 (10) |
231 (19) |
240 (28) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -8.61 | +6.63 | -5.15 | +8.72 | -6.52 | +2.18 | -1.71 | -0.79 | +4.45 | -4.31 | +8.45 |
Relative (%) | -48.0 | +37.0 | -28.7 | +48.6 | -36.4 | +12.1 | -9.5 | -4.4 | +24.8 | -24.0 | +47.1 | |
Steps (reduced) |
247 (35) |
255 (43) |
261 (49) |
268 (56) |
273 (61) |
279 (67) |
284 (72) |
289 (77) |
294 (82) |
298 (86) |
303 (91) |