106edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 105edt 106edt 107edt →
Prime factorization 2 × 53
Step size 17.943¢ 
Octave 67\106edt (1202.18¢)
Consistency limit 4
Distinct consistency limit 4

106 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 106edt or 106ed3), is a nonoctave tuning system that divides the interval of 3/1 into 106 equal parts of about 17.9 ¢ each. Each step represents a frequency ratio of 31/106, or the 106th root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 17.9 12.3
2 35.9 24.5
3 53.8 36.8 34/33
4 71.8 49.1 24/23
5 89.7 61.3 20/19, 39/37
6 107.7 73.6 33/31
7 125.6 85.8 29/27, 43/40
8 143.5 98.1 38/35
9 161.5 110.4 34/31, 45/41
10 179.4 122.6 41/37
11 197.4 134.9 37/33
12 215.3 147.2 17/15, 43/38
13 233.3 159.4 8/7
14 251.2 171.7
15 269.1 184 7/6
16 287.1 196.2 13/11
17 305 208.5 31/26, 37/31
18 323 220.8 41/34
19 340.9 233 28/23, 45/37
20 358.9 245.3
21 376.8 257.5 41/33
22 394.7 269.8 44/35
23 412.7 282.1 33/26
24 430.6 294.3
25 448.6 306.6 22/17, 35/27
26 466.5 318.9 17/13, 38/29
27 484.5 331.1 41/31, 45/34
28 502.4 343.4
29 520.3 355.7 27/20
30 538.3 367.9 15/11
31 556.2 380.2 40/29
32 574.2 392.5
33 592.1 404.7 31/22, 38/27
34 610.1 417 27/19, 37/26
35 628 429.2 23/16
36 645.9 441.5 45/31
37 663.9 453.8 22/15
38 681.8 466 40/27, 43/29
39 699.8 478.3 3/2
40 717.7 490.6
41 735.7 502.8 26/17
42 753.6 515.1 17/11
43 771.5 527.4 39/25
44 789.5 539.6 30/19, 41/26
45 807.4 551.9 43/27
46 825.4 564.2 29/18
47 843.3 576.4 44/27
48 861.3 588.7 23/14
49 879.2 600.9
50 897.1 613.2
51 915.1 625.5
52 933 637.7 12/7
53 951 650 26/15, 45/26
54 968.9 662.3 7/4
55 986.9 674.5
56 1004.8 686.8
57 1022.7 699.1
58 1040.7 711.3 31/17, 42/23
59 1058.6 723.6 35/19
60 1076.6 735.8 41/22
61 1094.5 748.1
62 1112.5 760.4 19/10
63 1130.4 772.6 25/13
64 1148.4 784.9 33/17
65 1166.3 797.2
66 1184.2 809.4
67 1202.2 821.7 2/1
68 1220.1 834
69 1238.1 846.2 45/22
70 1256 858.5 31/15
71 1274 870.8
72 1291.9 883 19/9
73 1309.8 895.3
74 1327.8 907.5
75 1345.7 919.8 37/17
76 1363.7 932.1 11/5
77 1381.6 944.3 20/9
78 1399.6 956.6
79 1417.5 968.9 34/15
80 1435.4 981.1 39/17
81 1453.4 993.4 44/19
82 1471.3 1005.7
83 1489.3 1017.9 26/11
84 1507.2 1030.2 43/18
85 1525.2 1042.5 41/17
86 1543.1 1054.7
87 1561 1067 37/15
88 1579 1079.2
89 1596.9 1091.5
90 1614.9 1103.8 33/13
91 1632.8 1116 18/7
92 1650.8 1128.3
93 1668.7 1140.6 21/8
94 1686.6 1152.8 45/17
95 1704.6 1165.1
96 1722.5 1177.4
97 1740.5 1189.6 41/15
98 1758.4 1201.9
99 1776.4 1214.2
100 1794.3 1226.4 31/11
101 1812.2 1238.7 37/13
102 1830.2 1250.9 23/8
103 1848.1 1263.2
104 1866.1 1275.5
105 1884 1287.7
106 1902 1300 3/1

Harmonics

Approximation of harmonics in 106edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +2.18 +0.00 +4.36 -5.15 +2.18 +4.45 +6.54 +0.00 -2.97 -6.49 +4.36
Relative (%) +12.1 +0.0 +24.3 -28.7 +12.1 +24.8 +36.4 +0.0 -16.6 -36.2 +24.3
Steps
(reduced)
67
(67)
106
(0)
134
(28)
155
(49)
173
(67)
188
(82)
201
(95)
212
(0)
222
(10)
231
(19)
240
(28)
Approximation of harmonics in 106edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -8.61 +6.63 -5.15 +8.72 -6.52 +2.18 -1.71 -0.79 +4.45 -4.31 +8.45
Relative (%) -48.0 +37.0 -28.7 +48.6 -36.4 +12.1 -9.5 -4.4 +24.8 -24.0 +47.1
Steps
(reduced)
247
(35)
255
(43)
261
(49)
268
(56)
273
(61)
279
(67)
284
(72)
289
(77)
294
(82)
298
(86)
303
(91)