107edt
Jump to navigation
Jump to search
Prime factorization
107 (prime)
Step size
17.7753¢
Octave
68\107edt (1208.72¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 106edt | 107edt | 108edt → |
107 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 107edt or 107ed3), is a nonoctave tuning system that divides the interval of 3/1 into 107 equal parts of about 17.8 ¢ each. Each step represents a frequency ratio of 31/107, or the 107th root of 3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 17.8 | |
2 | 35.6 | |
3 | 53.3 | 34/33 |
4 | 71.1 | |
5 | 88.9 | 39/37 |
6 | 106.7 | |
7 | 124.4 | 29/27 |
8 | 142.2 | 38/35 |
9 | 160 | 45/41 |
10 | 177.8 | 41/37 |
11 | 195.5 | |
12 | 213.3 | |
13 | 231.1 | |
14 | 248.9 | 15/13 |
15 | 266.6 | 7/6 |
16 | 284.4 | 46/39 |
17 | 302.2 | 25/21 |
18 | 320 | |
19 | 337.7 | 45/37 |
20 | 355.5 | |
21 | 373.3 | |
22 | 391.1 | |
23 | 408.8 | 19/15 |
24 | 426.6 | |
25 | 444.4 | |
26 | 462.2 | 17/13 |
27 | 479.9 | 33/25 |
28 | 497.7 | |
29 | 515.5 | 31/23, 35/26 |
30 | 533.3 | 34/25 |
31 | 551 | |
32 | 568.8 | 25/18 |
33 | 586.6 | |
34 | 604.4 | |
35 | 622.1 | |
36 | 639.9 | |
37 | 657.7 | 19/13 |
38 | 675.5 | |
39 | 693.2 | |
40 | 711 | |
41 | 728.8 | |
42 | 746.6 | |
43 | 764.3 | |
44 | 782.1 | 11/7 |
45 | 799.9 | 27/17, 46/29 |
46 | 817.7 | |
47 | 835.4 | 34/21 |
48 | 853.2 | 18/11 |
49 | 871 | |
50 | 888.8 | |
51 | 906.5 | |
52 | 924.3 | 29/17, 46/27 |
53 | 942.1 | |
54 | 959.9 | |
55 | 977.6 | |
56 | 995.4 | |
57 | 1013.2 | |
58 | 1031 | |
59 | 1048.7 | 11/6 |
60 | 1066.5 | |
61 | 1084.3 | 43/23 |
62 | 1102.1 | 17/9 |
63 | 1119.8 | 21/11 |
64 | 1137.6 | |
65 | 1155.4 | 37/19 |
66 | 1173.2 | |
67 | 1190.9 | |
68 | 1208.7 | |
69 | 1226.5 | |
70 | 1244.3 | 39/19 |
71 | 1262 | |
72 | 1279.8 | |
73 | 1297.6 | |
74 | 1315.4 | |
75 | 1333.1 | 41/19 |
76 | 1350.9 | |
77 | 1368.7 | |
78 | 1386.5 | |
79 | 1404.2 | |
80 | 1422 | 25/11 |
81 | 1439.8 | 39/17 |
82 | 1457.6 | |
83 | 1475.3 | |
84 | 1493.1 | 45/19 |
85 | 1510.9 | |
86 | 1528.7 | 46/19 |
87 | 1546.4 | |
88 | 1564.2 | 37/15 |
89 | 1582 | |
90 | 1599.8 | |
91 | 1617.6 | |
92 | 1635.3 | 18/7 |
93 | 1653.1 | 13/5 |
94 | 1670.9 | |
95 | 1688.7 | |
96 | 1706.4 | |
97 | 1724.2 | 46/17 |
98 | 1742 | 41/15 |
99 | 1759.8 | |
100 | 1777.5 | |
101 | 1795.3 | |
102 | 1813.1 | 37/13 |
103 | 1830.9 | |
104 | 1848.6 | |
105 | 1866.4 | |
106 | 1884.2 | |
107 | 1902 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +8.72 | +0.00 | -0.34 | +4.41 | +8.72 | +8.48 | +8.38 | +0.00 | -4.65 | +8.10 | -0.34 |
Relative (%) | +49.1 | +0.0 | -1.9 | +24.8 | +49.1 | +47.7 | +47.2 | +0.0 | -26.2 | +45.6 | -1.9 | |
Steps (reduced) |
68 (68) |
107 (0) |
135 (28) |
157 (50) |
175 (68) |
190 (83) |
203 (96) |
214 (0) |
224 (10) |
234 (20) |
242 (28) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.29 | -0.58 | +4.41 | -0.67 | +1.02 | +8.72 | +3.99 | +4.07 | +8.48 | -0.96 | -6.81 |
Relative (%) | +18.5 | -3.3 | +24.8 | -3.8 | +5.7 | +49.1 | +22.5 | +22.9 | +47.7 | -5.4 | -38.3 | |
Steps (reduced) |
250 (36) |
257 (43) |
264 (50) |
270 (56) |
276 (62) |
282 (68) |
287 (73) |
292 (78) |
297 (83) |
301 (87) |
305 (91) |