108edt
Jump to navigation
Jump to search
Prime factorization
22 × 33
Step size
17.6107¢
Octave
68\108edt (1197.53¢) (→17\27edt)
Consistency limit
10
Distinct consistency limit
10
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 107edt | 108edt | 109edt → |
108 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 108edt or 108ed3), is a nonoctave tuning system that divides the interval of 3/1 into 108 equal parts of about 17.6 ¢ each. Each step represents a frequency ratio of 31/108, or the 108th root of 3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 17.611 | |
2 | 35.221 | 47/46 |
3 | 52.832 | 34/33 |
4 | 70.443 | 25/24 |
5 | 88.053 | 20/19, 41/39 |
6 | 105.664 | |
7 | 123.275 | 29/27, 44/41 |
8 | 140.886 | 38/35 |
9 | 158.496 | 23/21, 34/31 |
10 | 176.107 | 41/37 |
11 | 193.718 | 47/42 |
12 | 211.328 | 26/23 |
13 | 228.939 | 8/7 |
14 | 246.55 | 15/13 |
15 | 264.16 | |
16 | 281.771 | |
17 | 299.382 | 19/16, 44/37 |
18 | 316.993 | 6/5 |
19 | 334.603 | |
20 | 352.214 | |
21 | 369.825 | 26/21, 47/38 |
22 | 387.435 | 5/4 |
23 | 405.046 | 24/19, 43/34 |
24 | 422.657 | 23/18, 37/29 |
25 | 440.267 | |
26 | 457.878 | 30/23, 43/33 |
27 | 475.489 | 25/19 |
28 | 493.099 | |
29 | 510.71 | 39/29, 47/35 |
30 | 528.321 | 19/14 |
31 | 545.932 | 37/27 |
32 | 563.542 | 18/13 |
33 | 581.153 | 7/5 |
34 | 598.764 | 41/29 |
35 | 616.374 | 10/7 |
36 | 633.985 | |
37 | 651.596 | 35/24 |
38 | 669.206 | 28/19 |
39 | 686.817 | |
40 | 704.428 | |
41 | 722.038 | 41/27, 44/29 |
42 | 739.649 | 23/15 |
43 | 757.26 | |
44 | 774.871 | 25/16, 36/23 |
45 | 792.481 | 30/19 |
46 | 810.092 | |
47 | 827.703 | 29/18 |
48 | 845.313 | 44/27 |
49 | 862.924 | |
50 | 880.535 | |
51 | 898.145 | 37/22, 42/25, 47/28 |
52 | 915.756 | 39/23 |
53 | 933.367 | 12/7 |
54 | 950.978 | 26/15, 45/26 |
55 | 968.588 | 7/4 |
56 | 986.199 | 23/13 |
57 | 1003.81 | 25/14 |
58 | 1021.42 | |
59 | 1039.031 | 31/17 |
60 | 1056.642 | 35/19, 46/25 |
61 | 1074.252 | |
62 | 1091.863 | 47/25 |
63 | 1109.474 | 19/10 |
64 | 1127.084 | 23/12 |
65 | 1144.695 | |
66 | 1162.306 | 43/22, 45/23, 47/24 |
67 | 1179.917 | |
68 | 1197.527 | |
69 | 1215.138 | |
70 | 1232.749 | |
71 | 1250.359 | |
72 | 1267.97 | |
73 | 1285.581 | 21/10 |
74 | 1303.191 | |
75 | 1320.802 | 15/7 |
76 | 1338.413 | 13/6 |
77 | 1356.023 | 35/16, 46/21 |
78 | 1373.634 | 42/19 |
79 | 1391.245 | 29/13 |
80 | 1408.856 | |
81 | 1426.466 | 41/18 |
82 | 1444.077 | 23/10 |
83 | 1461.688 | |
84 | 1479.298 | 47/20 |
85 | 1496.909 | 19/8 |
86 | 1514.52 | 12/5 |
87 | 1532.13 | 46/19 |
88 | 1549.741 | |
89 | 1567.352 | 47/19 |
90 | 1584.963 | 5/2 |
91 | 1602.573 | |
92 | 1620.184 | |
93 | 1637.795 | |
94 | 1655.405 | 13/5 |
95 | 1673.016 | 21/8 |
96 | 1690.627 | |
97 | 1708.237 | |
98 | 1725.848 | |
99 | 1743.459 | |
100 | 1761.069 | |
101 | 1778.68 | |
102 | 1796.291 | |
103 | 1813.902 | |
104 | 1831.512 | |
105 | 1849.123 | |
106 | 1866.734 | 47/16 |
107 | 1884.344 | |
108 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.47 | +0.00 | -4.95 | -3.82 | -2.47 | -5.18 | -7.42 | +0.00 | -6.30 | +4.81 | -4.95 |
Relative (%) | -14.0 | +0.0 | -28.1 | -21.7 | -14.0 | -29.4 | -42.1 | +0.0 | -35.8 | +27.3 | -28.1 | |
Steps (reduced) |
68 (68) |
108 (0) |
136 (28) |
158 (50) |
176 (68) |
191 (83) |
204 (96) |
216 (0) |
226 (10) |
236 (20) |
244 (28) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | -7.66 | -3.82 | +7.72 | +8.43 | -2.47 | -8.02 | -8.77 | -5.18 | +2.33 | -4.18 |
Relative (%) | -14.9 | -43.5 | -21.7 | +43.8 | +47.9 | -14.0 | -45.6 | -49.8 | -29.4 | +13.2 | -23.7 | |
Steps (reduced) |
252 (36) |
259 (43) |
266 (50) |
273 (57) |
279 (63) |
284 (68) |
289 (73) |
294 (78) |
299 (83) |
304 (88) |
308 (92) |