108edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 107edt 108edt 109edt →
Prime factorization 22 × 33
Step size 17.6107¢ 
Octave 68\108edt (1197.53¢) (→17\27edt)
Consistency limit 10
Distinct consistency limit 10

108 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 108edt or 108ed3), is a nonoctave tuning system that divides the interval of 3/1 into 108 equal parts of about 17.6 ¢ each. Each step represents a frequency ratio of 31/108, or the 108th root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 17.6 12
2 35.2 24.1 47/46
3 52.8 36.1 34/33
4 70.4 48.1 25/24
5 88.1 60.2 20/19, 41/39
6 105.7 72.2
7 123.3 84.3 29/27, 44/41
8 140.9 96.3 38/35
9 158.5 108.3 23/21, 34/31
10 176.1 120.4 41/37
11 193.7 132.4 47/42
12 211.3 144.4 26/23
13 228.9 156.5 8/7
14 246.5 168.5 15/13
15 264.2 180.6
16 281.8 192.6
17 299.4 204.6 19/16, 44/37
18 317 216.7 6/5
19 334.6 228.7
20 352.2 240.7
21 369.8 252.8 26/21, 47/38
22 387.4 264.8 5/4
23 405 276.9 24/19, 43/34
24 422.7 288.9 23/18, 37/29
25 440.3 300.9
26 457.9 313 30/23, 43/33
27 475.5 325 25/19
28 493.1 337
29 510.7 349.1 39/29, 47/35
30 528.3 361.1 19/14
31 545.9 373.1 37/27
32 563.5 385.2 18/13
33 581.2 397.2 7/5
34 598.8 409.3 41/29
35 616.4 421.3 10/7
36 634 433.3
37 651.6 445.4 35/24
38 669.2 457.4 28/19
39 686.8 469.4
40 704.4 481.5
41 722 493.5 41/27, 44/29
42 739.6 505.6 23/15
43 757.3 517.6
44 774.9 529.6 25/16, 36/23
45 792.5 541.7 30/19
46 810.1 553.7
47 827.7 565.7 29/18
48 845.3 577.8 44/27
49 862.9 589.8
50 880.5 601.9
51 898.1 613.9 37/22, 42/25, 47/28
52 915.8 625.9 39/23
53 933.4 638 12/7
54 951 650 26/15, 45/26
55 968.6 662 7/4
56 986.2 674.1 23/13
57 1003.8 686.1 25/14
58 1021.4 698.1
59 1039 710.2 31/17
60 1056.6 722.2 35/19, 46/25
61 1074.3 734.3
62 1091.9 746.3 47/25
63 1109.5 758.3 19/10
64 1127.1 770.4 23/12
65 1144.7 782.4
66 1162.3 794.4 43/22, 45/23, 47/24
67 1179.9 806.5
68 1197.5 818.5
69 1215.1 830.6
70 1232.7 842.6
71 1250.4 854.6
72 1268 866.7
73 1285.6 878.7 21/10
74 1303.2 890.7
75 1320.8 902.8 15/7
76 1338.4 914.8 13/6
77 1356 926.9 35/16, 46/21
78 1373.6 938.9 42/19
79 1391.2 950.9 29/13
80 1408.9 963
81 1426.5 975 41/18
82 1444.1 987 23/10
83 1461.7 999.1
84 1479.3 1011.1 47/20
85 1496.9 1023.1 19/8
86 1514.5 1035.2 12/5
87 1532.1 1047.2 46/19
88 1549.7 1059.3
89 1567.4 1071.3 47/19
90 1585 1083.3 5/2
91 1602.6 1095.4
92 1620.2 1107.4
93 1637.8 1119.4
94 1655.4 1131.5 13/5
95 1673 1143.5 21/8
96 1690.6 1155.6
97 1708.2 1167.6
98 1725.8 1179.6
99 1743.5 1191.7
100 1761.1 1203.7
101 1778.7 1215.7
102 1796.3 1227.8
103 1813.9 1239.8
104 1831.5 1251.9
105 1849.1 1263.9
106 1866.7 1275.9 47/16
107 1884.3 1288
108 1902 1300 3/1

Harmonics

Approximation of harmonics in 108edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -2.47 +0.00 -4.95 -3.82 -2.47 -5.18 -7.42 +0.00 -6.30 +4.81 -4.95
Relative (%) -14.0 +0.0 -28.1 -21.7 -14.0 -29.4 -42.1 +0.0 -35.8 +27.3 -28.1
Steps
(reduced)
68
(68)
108
(0)
136
(28)
158
(50)
176
(68)
191
(83)
204
(96)
216
(0)
226
(10)
236
(20)
244
(28)
Approximation of harmonics in 108edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -2.63 -7.66 -3.82 +7.72 +8.43 -2.47 -8.02 -8.77 -5.18 +2.33 -4.18
Relative (%) -14.9 -43.5 -21.7 +43.8 +47.9 -14.0 -45.6 -49.8 -29.4 +13.2 -23.7
Steps
(reduced)
252
(36)
259
(43)
266
(50)
273
(57)
279
(63)
284
(68)
289
(73)
294
(78)
299
(83)
304
(88)
308
(92)