109edt
Jump to navigation
Jump to search
Prime factorization
109 (prime)
Step size
17.4491¢
Octave
69\109edt (1203.99¢)
Consistency limit
5
Distinct consistency limit
5
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 108edt | 109edt | 110edt → |
109 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 109edt or 109ed3), is a nonoctave tuning system that divides the interval of 3/1 into 109 equal parts of about 17.4 ¢ each. Each step represents a frequency ratio of 31/109, or the 109th root of 3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 17.449 | |
2 | 34.898 | |
3 | 52.347 | 34/33, 35/34 |
4 | 69.797 | 25/24 |
5 | 87.246 | 41/39 |
6 | 104.695 | |
7 | 122.144 | 29/27 |
8 | 139.593 | |
9 | 157.042 | 23/21 |
10 | 174.491 | 21/19, 31/28 |
11 | 191.94 | 19/17 |
12 | 209.39 | 35/31 |
13 | 226.839 | |
14 | 244.288 | 38/33 |
15 | 261.737 | 43/37 |
16 | 279.186 | 27/23 |
17 | 296.635 | |
18 | 314.084 | 6/5 |
19 | 331.533 | 23/19 |
20 | 348.983 | 11/9 |
21 | 366.432 | 21/17, 47/38 |
22 | 383.881 | |
23 | 401.33 | 29/23, 34/27 |
24 | 418.779 | 14/11 |
25 | 436.228 | 9/7 |
26 | 453.677 | |
27 | 471.126 | 46/35 |
28 | 488.576 | |
29 | 506.025 | |
30 | 523.474 | 23/17 |
31 | 540.923 | 26/19 |
32 | 558.372 | 29/21, 47/34 |
33 | 575.821 | 46/33 |
34 | 593.27 | 31/22, 38/27 |
35 | 610.719 | 37/26, 47/33 |
36 | 628.169 | |
37 | 645.618 | 45/31 |
38 | 663.067 | 22/15 |
39 | 680.516 | 43/29 |
40 | 697.965 | |
41 | 715.414 | |
42 | 732.863 | 29/19 |
43 | 750.313 | |
44 | 767.762 | |
45 | 785.211 | |
46 | 802.66 | 27/17, 35/22 |
47 | 820.109 | 45/28 |
48 | 837.558 | 47/29 |
49 | 855.007 | |
50 | 872.456 | 43/26 |
51 | 889.906 | |
52 | 907.355 | |
53 | 924.804 | 29/17 |
54 | 942.253 | 31/18 |
55 | 959.702 | 47/27 |
56 | 977.151 | 44/25 |
57 | 994.6 | |
58 | 1012.049 | |
59 | 1029.499 | |
60 | 1046.948 | |
61 | 1064.397 | |
62 | 1081.846 | 28/15, 43/23 |
63 | 1099.295 | 17/9 |
64 | 1116.744 | |
65 | 1134.193 | |
66 | 1151.642 | 35/18, 37/19 |
67 | 1169.092 | |
68 | 1186.541 | |
69 | 1203.99 | |
70 | 1221.439 | |
71 | 1238.888 | 43/21, 45/22, 47/23 |
72 | 1256.337 | 31/15 |
73 | 1273.786 | |
74 | 1291.236 | |
75 | 1308.685 | |
76 | 1326.134 | |
77 | 1343.583 | |
78 | 1361.032 | |
79 | 1378.481 | |
80 | 1395.93 | 47/21 |
81 | 1413.379 | 43/19 |
82 | 1430.829 | |
83 | 1448.278 | |
84 | 1465.727 | 7/3 |
85 | 1483.176 | 33/14 |
86 | 1500.625 | |
87 | 1518.074 | |
88 | 1535.523 | 17/7 |
89 | 1552.972 | 27/11 |
90 | 1570.422 | |
91 | 1587.871 | 5/2 |
92 | 1605.32 | 43/17 |
93 | 1622.769 | 23/9 |
94 | 1640.218 | |
95 | 1657.667 | |
96 | 1675.116 | |
97 | 1692.565 | |
98 | 1710.015 | |
99 | 1727.464 | 19/7 |
100 | 1744.913 | |
101 | 1762.362 | 47/17 |
102 | 1779.811 | |
103 | 1797.26 | |
104 | 1814.709 | |
105 | 1832.158 | |
106 | 1849.608 | |
107 | 1867.057 | |
108 | 1884.506 | |
109 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.99 | +0.00 | +7.98 | +5.55 | +3.99 | -1.14 | -5.48 | +0.00 | -7.91 | +1.57 | +7.98 |
Relative (%) | +22.9 | +0.0 | +45.7 | +31.8 | +22.9 | -6.6 | -31.4 | +0.0 | -45.3 | +9.0 | +45.7 | |
Steps (reduced) |
69 (69) |
109 (0) |
138 (29) |
160 (51) |
178 (69) |
193 (84) |
206 (97) |
218 (0) |
228 (10) |
238 (20) |
247 (29) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -8.45 | +2.85 | +5.55 | -1.49 | -1.75 | +3.99 | -2.37 | -3.92 | -1.14 | +5.56 | -1.60 |
Relative (%) | -48.4 | +16.3 | +31.8 | -8.5 | -10.0 | +22.9 | -13.6 | -22.5 | -6.6 | +31.9 | -9.1 | |
Steps (reduced) |
254 (36) |
262 (44) |
269 (51) |
275 (57) |
281 (63) |
287 (69) |
292 (74) |
297 (79) |
302 (84) |
307 (89) |
311 (93) |