110edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 109edt 110edt 111edt →
Prime factorization 2 × 5 × 11
Step size 17.2905¢ 
Octave 69\110edt (1193.04¢)
Consistency limit 2
Distinct consistency limit 2

110 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 110edt or 110ed3), is a nonoctave tuning system that divides the interval of 3/1 into 110 equal parts of about 17.3⁠ ⁠¢ each. Each step represents a frequency ratio of 31/110, or the 110th root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 17.3 11.8
2 34.6 23.6
3 51.9 35.5 34/33, 35/34
4 69.2 47.3 26/25
5 86.5 59.1 41/39
6 103.7 70.9 35/33
7 121 82.7 15/14
8 138.3 94.5
9 155.6 106.4 23/21, 47/43
10 172.9 118.2 21/19
11 190.2 130 29/26
12 207.5 141.8
13 224.8 153.6 33/29
14 242.1 165.5 38/33
15 259.4 177.3 43/37
16 276.6 189.1 27/23, 34/29
17 293.9 200.9 45/38
18 311.2 212.7
19 328.5 224.5
20 345.8 236.4 11/9
21 363.1 248.2
22 380.4 260
23 397.7 271.8 34/27, 39/31
24 415 283.6 47/37
25 432.3 295.5
26 449.6 307.3 35/27
27 466.8 319.1 38/29
28 484.1 330.9 41/31, 45/34
29 501.4 342.7
30 518.7 354.5 31/23
31 536 366.4 15/11
32 553.3 378.2
33 570.6 390 25/18
34 587.9 401.8
35 605.2 413.6
36 622.5 425.5
37 639.7 437.3 42/29
38 657 449.1 19/13
39 674.3 460.9 31/21
40 691.6 472.7
41 708.9 484.5
42 726.2 496.4 35/23, 38/25
43 743.5 508.2
44 760.8 520 45/29
45 778.1 531.8
46 795.4 543.6
47 812.7 555.5
48 829.9 567.3 21/13
49 847.2 579.1 31/19
50 864.5 590.9
51 881.8 602.7
52 899.1 614.5 42/25
53 916.4 626.4 39/23
54 933.7 638.2
55 951 650 26/15, 45/26
56 968.3 661.8
57 985.6 673.6 23/13
58 1002.8 685.5 25/14, 41/23
59 1020.1 697.3
60 1037.4 709.1
61 1054.7 720.9 46/25
62 1072 732.7 13/7
63 1089.3 744.5
64 1106.6 756.4
65 1123.9 768.2
66 1141.2 780 29/15
67 1158.5 791.8 41/21
68 1175.8 803.6
69 1193 815.5
70 1210.3 827.3
71 1227.6 839.1
72 1244.9 850.9 39/19
73 1262.2 862.7 29/14
74 1279.5 874.5
75 1296.8 886.4
76 1314.1 898.2
77 1331.4 910 41/19
78 1348.7 921.8
79 1365.9 933.6 11/5
80 1383.2 945.5
81 1400.5 957.3
82 1417.8 969.1 34/15
83 1435.1 980.9
84 1452.4 992.7
85 1469.7 1004.5
86 1487 1016.4
87 1504.3 1028.2 31/13
88 1521.6 1040
89 1538.9 1051.8
90 1556.1 1063.6 27/11
91 1573.4 1075.5
92 1590.7 1087.3
93 1608 1099.1 38/15, 43/17
94 1625.3 1110.9 23/9
95 1642.6 1122.7
96 1659.9 1134.5
97 1677.2 1146.4 29/11
98 1694.5 1158.2
99 1711.8 1170
100 1729.1 1181.8 19/7
101 1746.3 1193.6
102 1763.6 1205.5
103 1780.9 1217.3 14/5
104 1798.2 1229.1
105 1815.5 1240.9
106 1832.8 1252.7
107 1850.1 1264.5
108 1867.4 1276.4
109 1884.7 1288.2
110 1902 1300 3/1

Harmonics

Approximation of harmonics in 110edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -6.96 +0.00 +3.38 -2.54 -6.96 +2.82 -3.58 +0.00 +7.79 -1.60 +3.38
Relative (%) -40.2 +0.0 +19.5 -14.7 -40.2 +16.3 -20.7 +0.0 +45.1 -9.2 +19.5
Steps
(reduced)
69
(69)
110
(0)
139
(29)
161
(51)
179
(69)
195
(85)
208
(98)
220
(0)
231
(11)
240
(20)
249
(29)
Approximation of harmonics in 110edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +3.13 -4.13 -2.54 +6.76 +5.55 -6.96 +3.18 +0.84 +2.82 -8.55 +0.94
Relative (%) +18.1 -23.9 -14.7 +39.1 +32.1 -40.2 +18.4 +4.8 +16.3 -49.5 +5.5
Steps
(reduced)
257
(37)
264
(44)
271
(51)
278
(58)
284
(64)
289
(69)
295
(75)
300
(80)
305
(85)
309
(89)
314
(94)