110edt
Jump to navigation
Jump to search
Prime factorization
2 × 5 × 11
Step size
17.2905¢
Octave
69\110edt (1193.04¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 109edt | 110edt | 111edt → |
110 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 110edt or 110ed3), is a nonoctave tuning system that divides the interval of 3/1 into 110 equal parts of about 17.3 ¢ each. Each step represents a frequency ratio of 31/110, or the 110th root of 3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 17.291 | |
2 | 34.581 | |
3 | 51.872 | 34/33, 35/34 |
4 | 69.162 | 26/25 |
5 | 86.453 | 41/39 |
6 | 103.743 | 35/33 |
7 | 121.034 | 15/14 |
8 | 138.324 | |
9 | 155.615 | 23/21, 47/43 |
10 | 172.905 | 21/19 |
11 | 190.196 | 29/26 |
12 | 207.486 | |
13 | 224.777 | 33/29 |
14 | 242.067 | 38/33 |
15 | 259.358 | 43/37 |
16 | 276.648 | 27/23, 34/29 |
17 | 293.939 | 45/38 |
18 | 311.229 | |
19 | 328.52 | |
20 | 345.81 | 11/9 |
21 | 363.101 | |
22 | 380.391 | |
23 | 397.682 | 34/27, 39/31 |
24 | 414.972 | 47/37 |
25 | 432.263 | |
26 | 449.553 | 35/27 |
27 | 466.844 | 38/29 |
28 | 484.134 | 41/31, 45/34 |
29 | 501.425 | |
30 | 518.715 | 31/23 |
31 | 536.006 | 15/11 |
32 | 553.296 | |
33 | 570.587 | 25/18 |
34 | 587.877 | |
35 | 605.168 | |
36 | 622.458 | |
37 | 639.749 | 42/29 |
38 | 657.039 | 19/13 |
39 | 674.33 | 31/21 |
40 | 691.62 | |
41 | 708.911 | |
42 | 726.201 | 35/23, 38/25 |
43 | 743.492 | |
44 | 760.782 | 45/29 |
45 | 778.073 | |
46 | 795.363 | |
47 | 812.654 | |
48 | 829.944 | 21/13 |
49 | 847.235 | 31/19 |
50 | 864.525 | |
51 | 881.816 | |
52 | 899.106 | 42/25 |
53 | 916.397 | 39/23 |
54 | 933.687 | |
55 | 950.978 | 26/15, 45/26 |
56 | 968.268 | |
57 | 985.559 | 23/13 |
58 | 1002.849 | 25/14, 41/23 |
59 | 1020.14 | |
60 | 1037.43 | |
61 | 1054.721 | 46/25 |
62 | 1072.011 | 13/7 |
63 | 1089.302 | |
64 | 1106.592 | |
65 | 1123.883 | |
66 | 1141.173 | 29/15 |
67 | 1158.464 | 41/21 |
68 | 1175.754 | |
69 | 1193.045 | |
70 | 1210.335 | |
71 | 1227.626 | |
72 | 1244.916 | 39/19 |
73 | 1262.207 | 29/14 |
74 | 1279.497 | |
75 | 1296.788 | |
76 | 1314.078 | |
77 | 1331.369 | 41/19 |
78 | 1348.659 | |
79 | 1365.95 | 11/5 |
80 | 1383.24 | |
81 | 1400.531 | |
82 | 1417.821 | 34/15 |
83 | 1435.112 | |
84 | 1452.402 | |
85 | 1469.693 | |
86 | 1486.983 | |
87 | 1504.274 | 31/13 |
88 | 1521.564 | |
89 | 1538.855 | |
90 | 1556.145 | 27/11 |
91 | 1573.436 | |
92 | 1590.726 | |
93 | 1608.017 | 38/15, 43/17 |
94 | 1625.307 | 23/9 |
95 | 1642.598 | |
96 | 1659.888 | |
97 | 1677.179 | 29/11 |
98 | 1694.469 | |
99 | 1711.76 | |
100 | 1729.05 | 19/7 |
101 | 1746.341 | |
102 | 1763.631 | |
103 | 1780.922 | 14/5 |
104 | 1798.212 | |
105 | 1815.503 | |
106 | 1832.793 | |
107 | 1850.084 | |
108 | 1867.374 | |
109 | 1884.665 | |
110 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -6.96 | +0.00 | +3.38 | -2.54 | -6.96 | +2.82 | -3.58 | +0.00 | +7.79 | -1.60 | +3.38 |
Relative (%) | -40.2 | +0.0 | +19.5 | -14.7 | -40.2 | +16.3 | -20.7 | +0.0 | +45.1 | -9.2 | +19.5 | |
Steps (reduced) |
69 (69) |
110 (0) |
139 (29) |
161 (51) |
179 (69) |
195 (85) |
208 (98) |
220 (0) |
231 (11) |
240 (20) |
249 (29) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.13 | -4.13 | -2.54 | +6.76 | +5.55 | -6.96 | +3.18 | +0.84 | +2.82 | -8.55 | +0.94 |
Relative (%) | +18.1 | -23.9 | -14.7 | +39.1 | +32.1 | -40.2 | +18.4 | +4.8 | +16.3 | -49.5 | +5.5 | |
Steps (reduced) |
257 (37) |
264 (44) |
271 (51) |
278 (58) |
284 (64) |
289 (69) |
295 (75) |
300 (80) |
305 (85) |
309 (89) |
314 (94) |