Ed7
Ed7 means Division of the Seventh Harmonic (7/1) into n equal parts.
Properties
The seventh harmonic is particularly wide as far as equivalences go. There are (at absolute most) ~3.9 heptataves within the human hearing range; imagine if that were the case with octaves. If one does indeed deal with heptatave equivalence, this fact shapes one's musical approach dramatically.
Incidentally, one way to treat 7/1 as an equivalence is to eliminate the primes 2, 3, and 5 and use the 7:11:13:(49) chord as the fundamental complete sonority in a very similar way to the 4:5:6:(8) chord in meantone Whereas in meantone it takes four 3/2 to get to 5/4, here it takes seven 13/7 to get to 11/7 (tempering out the comma 63412811/62748517 in the 7.11.13 subgroup). This temperament yields 10, 13, 16, 19, 22, 25, and 47 note MOS. If 7/1 is too wide to be used as an equivalence, the next best option would be equal divisions of 11/7.
Table of similar ETs
ED7 | Similar EDO | Similar EDT | Similar EDF |
---|---|---|---|
7ed7 | 4edt | ||
9ed7 | 5edt | ||
11ed7 | 4edo | ||
14ed7 | 5edo | ||
16ed7 | 9edt | ||
17ed7 | 6edo | ||
18ed7 | 10edt | ||
21ed7 | 12edt | ||
23ed7 | 13edt | ||
25ed7 | 9edo | ||
28ed7 | 10edo | ||
30ed7 | 17edt | ||
31ed7 | 11edo | ||
32ed7 | 18edt | ||
34ed7 | 12edo | ||
37ed7 | 21edt | ||
39ed7 | 14edo | ||
41ed7 | 23edt | ||
42ed7 | 15edo | ||
44ed7 | 25edt | ||
45ed7 | 16edo | ||
46ed7 | 26edt | ||
48ed7 | 17edo | ||
53ed7 | 30edt | ||
55ed7 | 31edt | ||
56ed7 | 20edo | ||
57ed7 | 32edt | ||
59ed7 | 21edo | ||
60ed7 | 34edt | ||
62ed7 | 22edo | ||
64ed7 | 36edt | ||
67ed7 | 38edt | ||
69ed7 | 39edt | ||
70ed7 | 25edo | ||
71ed7 | 40edt | ||
73ed7 | 26edo | ||
76ed7 | 27edo | ||
78ed7 | 44edt | ||
80ed7 | 45edt | ||
83ed7 | 47edt | ||
84ed7 | 30edo | ||
85ed7 | 48edt | ||
87ed7 | 31edo | ||
90ed7 | 32edo | ||
92ed7 | 52edt | ||
94ed7 | 53edt | ||
96ed7 | 20edf (& Carlos Gamma) | ||
98ed7 | 35edo | ||
99ed7 | 56edt |
Individual pages for ED7s
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 |
40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 |
50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 |
60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 |
70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 |
80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 |
90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 |
100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 |
110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 |
120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 |
130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 |
140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 |
150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 |
160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 |
170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 |
180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 |
190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 |