# 25edt

 ← 24edt 25edt 26edt →
Prime factorization 52
Step size 76.0782¢
Octave 16\25edt (1217.25¢)
Consistency limit 5
Distinct consistency limit 5

25EDT is the equal division of the third harmonic into 25 parts of 76.0782 cents each, corresponding to 15.7732 edo (stretched version of 16edo).

Approximation of prime harmonics in 25edt
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Error Absolute (¢) +17.3 +0.0 +28.6 -21.4 +33.0 -28.0 -36.0 -0.3 -26.7 +28.4 -10.9 -12.9 +37.6 +31.2 +29.4
Relative (%) +22.7 +0.0 +37.6 -28.1 +43.4 -36.8 -47.3 -0.4 -35.1 +37.4 -14.4 -17.0 +49.4 +41.0 +38.6
Steps
(reduced)
16
(16)
25
(0)
37
(12)
44
(19)
55
(5)
58
(8)
64
(14)
67
(17)
71
(21)
77
(2)
78
(3)
82
(7)
85
(10)
86
(11)
88
(13)

This scale coincidentally turns out to be 16 equal divisions of a stretched octave (1217.25 cents) and a tritave twin of the Armodue/Hornbostel flat third-tone system:

• 6th = 1065.095 cents
• squared = 2130.19 cents = 228.235 cents
• cubed = 1293.33 cents
• fourth power = 2358.425 cents = 456.47 cents
Degree cents hekts Armodue name
1 76.08 52 1#/2bb
2 152.16 104 1x/2b
3 228.235 156 2
4 304.31 208 2#/3bb
5 380.39 260 2x/3b
6 456.47 312 3
7 532.55 364 3#/4b
8 608.625 416 4
9 684.70 468 4#/5bb
10 760.78 520 4x/5b
11 836.86 572 5
12 912.94 624 5#/6bb
13 989.02 676 5x/6b
14 1065.095 728 6
15 1141.17 780 6#/7bb
16 1217.25 832 6x/7b
17 1293.33 884 7
18 1369.41 936 7#/8b
19 1445.485 988 8
20 1521.56 1040 8#/9bb
21 1597.64 1092 8x/9b
22 1673.72 1144 9
23 1749.80 1196 9#/1bb
24 1825.88 1248 9x/1b
25 1901.955 1300 1