25edt
Jump to navigation
Jump to search
Prime factorization
52
Step size
76.0782¢
Octave
16\25edt (1217.25¢)
Consistency limit
5
Distinct consistency limit
5
← 24edt | 25edt | 26edt → |
25EDT is the equal division of the third harmonic into 25 parts of 76.0782 cents each, corresponding to 15.7732 edo (stretched version of 16edo).
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +17.3 | +0.0 | +28.6 | -21.4 | +33.0 | -28.0 | -36.0 | -0.3 | -26.7 | +28.4 | -10.9 | -12.9 | +37.6 | +31.2 | +29.4 |
Relative (%) | +22.7 | +0.0 | +37.6 | -28.1 | +43.4 | -36.8 | -47.3 | -0.4 | -35.1 | +37.4 | -14.4 | -17.0 | +49.4 | +41.0 | +38.6 | |
Steps (reduced) |
16 (16) |
25 (0) |
37 (12) |
44 (19) |
55 (5) |
58 (8) |
64 (14) |
67 (17) |
71 (21) |
77 (2) |
78 (3) |
82 (7) |
85 (10) |
86 (11) |
88 (13) |
This scale coincidentally turns out to be 16 equal divisions of a stretched octave (1217.25 cents) and a tritave twin of the Armodue/Hornbostel flat third-tone system:
- 6th = 1065.095 cents
- squared = 2130.19 cents = 228.235 cents
- cubed = 1293.33 cents
- fourth power = 2358.425 cents = 456.47 cents
Degree | cents | hekts | Armodue name |
---|---|---|---|
1 | 76.08 | 52 | 1#/2bb |
2 | 152.16 | 104 | 1x/2b |
3 | 228.235 | 156 | 2 |
4 | 304.31 | 208 | 2#/3bb |
5 | 380.39 | 260 | 2x/3b |
6 | 456.47 | 312 | 3 |
7 | 532.55 | 364 | 3#/4b |
8 | 608.625 | 416 | 4 |
9 | 684.70 | 468 | 4#/5bb |
10 | 760.78 | 520 | 4x/5b |
11 | 836.86 | 572 | 5 |
12 | 912.94 | 624 | 5#/6bb |
13 | 989.02 | 676 | 5x/6b |
14 | 1065.095 | 728 | 6 |
15 | 1141.17 | 780 | 6#/7bb |
16 | 1217.25 | 832 | 6x/7b |
17 | 1293.33 | 884 | 7 |
18 | 1369.41 | 936 | 7#/8b |
19 | 1445.485 | 988 | 8 |
20 | 1521.56 | 1040 | 8#/9bb |
21 | 1597.64 | 1092 | 8x/9b |
22 | 1673.72 | 1144 | 9 |
23 | 1749.80 | 1196 | 9#/1bb |
24 | 1825.88 | 1248 | 9x/1b |
25 | 1901.955 | 1300 | 1 |