44ed7

From Xenharmonic Wiki
Jump to navigation Jump to search
← 43ed7 44ed7 45ed7 →
Prime factorization 22 × 11
Step size 76.5642¢ 
Octave 16\44ed7 (1225.03¢) (→4\11ed7)
Twelfth 25\44ed7 (1914.11¢)
Consistency limit 3
Distinct consistency limit 3

Division of the 7th harmonic into 44 equal parts (44ed7) is related to 25edt, but with the 7/1 rather than the 3/1 being just. The step size is about 76.5642 cents, corresponding to 15.6731 edo.

Intervals

Intervals of 44ed7
degree cents value corresponding
JI intervals
comments
0 0.0000 exact 1/1
1 76.5642 25/24~22/21
2 153.1285 12/11
3 229.6927 8/7
4 306.2569 25/21
5 382.8211 5/4
6 459.3854 13/10
7 535.9496 15/11
8 612.5138
9 689.0780 119/80
10 765.6423 14/9
11 842.2065 13/8
12 918.7707 17/10
13 995.3349 16/9
14 1071.8992 13/7
15 1148.4634 35/18
16 1225.0276
17 1301.5918 17/8
18 1378.1561 20/9
19 1454.7203 44/19~51/22
20 1531.2845
21 1607.8487 38/15
22 1684.4130 119/45, 45/17
23 1760.9772 36/13
24 1837.5414 26/9
25 1914.1056
26 1990.6699 63/20
27 2067.2341 56/17
28 2143.7983
29 2220.3625 18/5
30 2296.9268 49/13
31 2373.4910 63/16
32 2450.0552
33 2526.6194
34 2603.1837 9/2
35 2679.7479 80/17
36 2756.3121
37 2832.8763
38 2909.4406
39 2986.0048
40 3062.5690
41 3139.1332
42 3215.6975
43 3292.2617
44 3368.8259 exact 7/1 harmonic seventh plus two octaves

Harmonics

Approximation of harmonics in 44ed7
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +25.0 +12.2 -26.5 -30.0 +37.2 +0.0 -1.5 +24.3 -5.0 -16.8 -14.4
Relative (%) +32.7 +15.9 -34.6 -39.2 +48.6 +0.0 -1.9 +31.7 -6.5 -22.0 -18.8
Steps
(reduced)
16
(16)
25
(25)
31
(31)
36
(36)
41
(41)
44
(0)
47
(3)
50
(6)
52
(8)
54
(10)
56
(12)
Approximation of harmonics in 44ed7
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +0.2 +25.0 -17.9 +23.5 -4.8 -27.2 +32.3 +20.1 +12.2 +8.2 +7.8
Relative (%) +0.3 +32.7 -23.3 +30.8 -6.3 -35.6 +42.2 +26.2 +15.9 +10.7 +10.2
Steps
(reduced)
58
(14)
60
(16)
61
(17)
63
(19)
64
(20)
65
(21)
67
(23)
68
(24)
69
(25)
70
(26)
71
(27)


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.