23ed7

From Xenharmonic Wiki
Jump to navigation Jump to search
← 22ed7 23ed7 24ed7 →
Prime factorization 23 (prime)
Step size 146.471¢ 
Octave 8\23ed7 (1171.77¢)
Twelfth 13\23ed7 (1904.12¢)
(convergent)
Consistency limit 6
Distinct consistency limit 4

Division of the 7th harmonic into 23 equal parts (23ED7) is related to the Bohlen-Pierce scale, but with the 7/1 rather than the 3/1 being just. The step size is about 146.4707 cents, corresponding to 8.1928 EDO. It is almost identical to POTE generator for 7-limit bohpier temperament.

Intervals

degree cents value corresponding
JI intervals
comments
0 0.0000 exact 1/1
1 146.4707 49/45
2 292.9414 13/11
3 439.4121 9/7
4 585.8828 7/5
5 732.3535 49/32
6 878.8241 5/3
7 1025.2948 9/5
8 1171.7655 63/32
9 1318.2362 15/7
10 1464.7069 7/3
11 1611.1776 28/11
12 1757.6483 11/4
13 1904.1190 3/1
14 2050.5897 49/15
15 2197.0604 32/9
16 2343.5311 35/9
17 2490.0018 21/5
18 2636.4724 32/7
19 2782.9431 5/1
20 2929.4138 49/9
21 3075.8845 77/13
22 3222.3552 45/7
23 3368.8259 exact 7/1 harmonic seventh plus two octaves

Harmonics

Approximation of prime harmonics in 23ed7
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -28.2 +2.2 -3.4 +0.0 -50.1 -46.4 -71.4 +29.0 -8.9 +29.3 +60.3
Relative (%) -19.3 +1.5 -2.3 +0.0 -34.2 -31.7 -48.8 +19.8 -6.0 +20.0 +41.1
Steps
(reduced)
8
(8)
13
(13)
19
(19)
23
(0)
28
(5)
30
(7)
33
(10)
35
(12)
37
(14)
40
(17)
41
(18)
Approximation of prime harmonics in 23ed7
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +46.9 +15.6 -66.8 +72.1 +10.6 -28.6 +60.2 +44.2 -56.2 +42.2 +51.9
Relative (%) +32.0 +10.7 -45.6 +49.3 +7.2 -19.5 +41.1 +30.2 -38.3 +28.8 +35.5
Steps
(reduced)
43
(20)
44
(21)
44
(21)
46
(0)
47
(1)
48
(2)
49
(3)
50
(4)
50
(4)
51
(5)
52
(6)

See also

  • 13ED3: relative ED3 (Bohlen-Pierce scale)
  • 19ED5: relative ED5


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.