29ed7

From Xenharmonic Wiki
Jump to navigation Jump to search
← 28ed729ed730ed7 →
Prime factorization 29 (prime)
Step size 116.166¢ 
Octave 10\29ed7 (1161.66¢)
Twelfth 16\29ed7 (1858.66¢)
Consistency limit 3
Distinct consistency limit 3

29 equal divisions of the 7th harmonic (abbreviated 29ed7) is a nonoctave tuning system that divides the interval of 7/1 into 29 equal parts of about 116 ¢ each. Each step represents a frequency ratio of 71/29, or the 29th root of 7. It is similar to every third step of 31edo.

Intervals

degree cents value corresponding
JI intervals
comments
0 0.0000 exact 1/1
1 116.1664 77/72, 15/14
2 232.3328 8/7
3 348.4992 11/9, 49/40
4 464.6656 98/75
5 580.8321 7/5
6 696.9985 112/75, 121/81, 136/91, 187/125
7 813.1649 8/5
8 929.3313 65/38
9 1045.4977 64/35
10 1161.6641 88/45, 96/49, 49/25
11 1277.8305 44/21
12 1393.9969 38/17, 85/38
13 1510.1633
14 1626.3297 64/25
15 1742.4962 52/19
16 1858.6626 38/13
17 1974.8290 25/8
18 2090.9954
19 2207.1618 68/19
20 2323.3282 65/17
21 2439.4946 45/11
22 2555.6610 35/8
23 2671.8274
24 2787.9939 5/1
25 2904.1603 75/14
26 3020.3267 40/7, 63/11
27 3136.4931 49/8
28 3252.6595 98/15, 72/11
29 3368.8259 exact 7/1 harmonic seventh plus two octaves

Harmonics

Approximation of harmonics in 29ed7
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -38.3 -43.3 +39.5 +1.7 +34.5 +0.0 +1.2 +29.6 -36.7 +30.7 -3.8
Relative (%) -33.0 -37.3 +34.0 +1.4 +29.7 +0.0 +1.0 +25.5 -31.6 +26.4 -3.3
Steps
(reduced)
10
(10)
16
(16)
21
(21)
24
(24)
27
(27)
29
(0)
31
(2)
33
(4)
34
(5)
36
(7)
37
(8)
Approximation of harmonics in 29ed7
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -26.2 -38.3 -41.6 -37.2 -26.0 -8.8 +13.8 +41.2 -43.3 -7.7 +31.5
Relative (%) -22.6 -33.0 -35.8 -32.0 -22.4 -7.5 +11.9 +35.4 -37.3 -6.6 +27.2
Steps
(reduced)
38
(9)
39
(10)
40
(11)
41
(12)
42
(13)
43
(14)
44
(15)
45
(16)
45
(16)
46
(17)
47
(18)