56edt
Jump to navigation
Jump to search
Prime factorization
23 × 7
Step size
33.9635¢
Octave
35\56edt (1188.72¢) (→5\8edt)
Consistency limit
2
Distinct consistency limit
2
← 55edt | 56edt | 57edt → |
The 56 equal division of 3, the tritave, divides it into 56 equal parts of 33.963 cents each, corresponding to 35.332 edo. It tempers out 245/243 in the 7-limit, 1331/1323 in the 11-limit and 275/273 in the 13-limit. It supports the 3.5.7.11.13 temperament with mapping [<1 5 0 1 10|, <0 -6 3 2 -13|]. 56edt is the twelfth no-twos zeta peak edt.
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -11.3 | +0.0 | -1.3 | -6.4 | -7.8 | +8.7 | -14.2 | -3.0 | +5.9 |
Relative (%) | -33.2 | +0.0 | -3.9 | -19.0 | -22.9 | +25.6 | -41.9 | -8.8 | +17.3 | |
Steps (reduced) |
35 (35) |
56 (0) |
82 (26) |
99 (43) |
122 (10) |
131 (19) |
144 (32) |
150 (38) |
160 (48) |
Harmonic | 25 | 27 | 29 | 31 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.6 | +0.0 | +12.1 | -1.4 | -7.8 | -7.7 | -2.1 | +8.7 | -10.0 | +9.5 | -1.3 |
Relative (%) | -7.7 | +0.0 | +35.7 | -4.2 | -22.9 | -22.8 | -6.1 | +25.6 | -29.3 | +27.9 | -3.9 | |
Steps (reduced) |
164 (52) |
168 (0) |
172 (4) |
175 (7) |
178 (10) |
181 (13) |
184 (16) |
187 (19) |
189 (21) |
192 (24) |
194 (26) |
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 34 | 23.2 | |
2 | 67.9 | 46.4 | 26/25, 27/26 |
3 | 101.9 | 69.6 | 18/17 |
4 | 135.9 | 92.9 | 27/25 |
5 | 169.8 | 116.1 | 11/10, 21/19 |
6 | 203.8 | 139.3 | |
7 | 237.7 | 162.5 | 31/27 |
8 | 271.7 | 185.7 | 7/6 |
9 | 305.7 | 208.9 | 25/21, 31/26 |
10 | 339.6 | 232.1 | 17/14 |
11 | 373.6 | 255.4 | 26/21, 31/25 |
12 | 407.6 | 278.6 | 19/15 |
13 | 441.5 | 301.8 | 22/17 |
14 | 475.5 | 325 | 25/19 |
15 | 509.5 | 348.2 | |
16 | 543.4 | 371.4 | 26/19 |
17 | 577.4 | 394.6 | |
18 | 611.3 | 417.9 | 27/19 |
19 | 645.3 | 441.1 | |
20 | 679.3 | 464.3 | |
21 | 713.2 | 487.5 | |
22 | 747.2 | 510.7 | |
23 | 781.2 | 533.9 | 11/7 |
24 | 815.1 | 557.1 | |
25 | 849.1 | 580.4 | 18/11, 31/19 |
26 | 883.1 | 603.6 | 5/3 |
27 | 917 | 626.8 | 17/10 |
28 | 951 | 650 | 19/11, 26/15, 33/19 |
29 | 984.9 | 673.2 | 23/13, 30/17 |
30 | 1018.9 | 696.4 | 9/5 |
31 | 1052.9 | 719.6 | 11/6 |
32 | 1086.8 | 742.9 | |
33 | 1120.8 | 766.1 | 21/11 |
34 | 1154.8 | 789.3 | |
35 | 1188.7 | 812.5 | |
36 | 1222.7 | 835.7 | |
37 | 1256.6 | 858.9 | 31/15 |
38 | 1290.6 | 882.1 | 19/9 |
39 | 1324.6 | 905.4 | |
40 | 1358.5 | 928.6 | |
41 | 1392.5 | 951.8 | 29/13 |
42 | 1426.5 | 975 | |
43 | 1460.4 | 998.2 | |
44 | 1494.4 | 1021.4 | |
45 | 1528.4 | 1044.6 | |
46 | 1562.3 | 1067.9 | |
47 | 1596.3 | 1091.1 | |
48 | 1630.2 | 1114.3 | 18/7 |
49 | 1664.2 | 1137.5 | |
50 | 1698.2 | 1160.7 | |
51 | 1732.1 | 1183.9 | 19/7, 30/11 |
52 | 1766.1 | 1207.1 | 25/9 |
53 | 1800.1 | 1230.4 | 17/6 |
54 | 1834 | 1253.6 | 26/9 |
55 | 1868 | 1276.8 | |
56 | 1902 | 1300 | 3/1 |