57edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 56edt 57edt 58edt →
Prime factorization 3 × 19
Step size 33.3676¢ 
Octave 36\57edt (1201.23¢) (→12\19edt)
Consistency limit 8
Distinct consistency limit 8

57 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 57edt or 57ed3), is a nonoctave tuning system that divides the interval of 3/1 into 57 equal parts of about 33.4⁠ ⁠¢ each. Each step represents a frequency ratio of 31/57, or the 57th root of 3.

57edt is related to 36edo (sixth-tone tuning), but with the 3/1 rather than the 2/1 being just. This stretches the octave by about 1.2347 cents. It is consistent to the 9-integer-limit. In comparison, 36edo is only consistent up to the 8-integer-limit.

Lookalikes: 21edf, 36edo, 93ed6, 101ed7, 129ed12

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 33.4 22.8
2 66.7 45.6 27/26, 28/27
3 100.1 68.4 18/17
4 133.5 91.2
5 166.8 114 32/29
6 200.2 136.8 9/8
7 233.6 159.6 8/7
8 266.9 182.5 7/6
9 300.3 205.3 19/16, 31/26
10 333.7 228.1 17/14, 23/19
11 367 250.9 21/17, 26/21
12 400.4 273.7 24/19, 29/23, 34/27
13 433.8 296.5 9/7
14 467.1 319.3 17/13, 21/16
15 500.5 342.1 4/3
16 533.9 364.9
17 567.2 387.7 18/13, 32/23
18 600.6 410.5 17/12, 24/17
19 634 433.3 13/9
20 667.4 456.1 28/19
21 700.7 478.9 3/2
22 734.1 501.8 26/17, 29/19
23 767.5 524.6 14/9
24 800.8 547.4 27/17
25 834.2 570.2 21/13, 34/21
26 867.6 593 28/17
27 900.9 615.8 32/19
28 934.3 638.6 12/7
29 967.7 661.4 7/4
30 1001 684.2
31 1034.4 707
32 1067.8 729.8 13/7
33 1101.1 752.6 17/9
34 1134.5 775.4 27/14
35 1167.9 798.2
36 1201.2 821.1 2/1
37 1234.6 843.9
38 1268 866.7 27/13
39 1301.3 889.5 17/8
40 1334.7 912.3 13/6
41 1368.1 935.1
42 1401.4 957.9 9/4
43 1434.8 980.7 16/7
44 1468.2 1003.5 7/3
45 1501.5 1026.3 19/8, 31/13
46 1534.9 1049.1 17/7
47 1568.3 1071.9
48 1601.6 1094.7
49 1635 1117.5 18/7
50 1668.4 1140.4 21/8, 34/13
51 1701.7 1163.2 8/3
52 1735.1 1186
53 1768.5 1208.8
54 1801.9 1231.6 17/6
55 1835.2 1254.4 26/9
56 1868.6 1277.2
57 1902 1300 3/1

Harmonics

Approximation of harmonics in 57edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +1.2 +0.0 +2.5 +16.6 +1.2 +1.3 +3.7 +0.0 -15.6 -13.7 +2.5
Relative (%) +3.7 +0.0 +7.4 +49.7 +3.7 +3.9 +11.1 +0.0 -46.6 -41.2 +7.4
Steps
(reduced)
36
(36)
57
(0)
72
(15)
84
(27)
93
(36)
101
(44)
108
(51)
114
(0)
119
(5)
124
(10)
129
(15)
Approximation of harmonics in 57edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -2.6 +2.5 +16.6 +4.9 +0.1 +1.2 +7.7 -14.3 +1.3 -12.5 +10.6
Relative (%) -7.9 +7.6 +49.7 +14.8 +0.3 +3.7 +23.2 -42.9 +3.9 -37.5 +31.9
Steps
(reduced)
133
(19)
137
(23)
141
(27)
144
(30)
147
(33)
150
(36)
153
(39)
155
(41)
158
(44)
160
(46)
163
(49)