55edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 54edt 55edt 56edt →
Prime factorization 5 × 11
Step size 34.581¢ 
Octave 35\55edt (1210.34¢) (→7\11edt)
Consistency limit 2
Distinct consistency limit 2

55EDT is the equal division of the third harmonic into 55 parts of 34.5810 cents each, corresponding to 34.7011 edo. It is related to the regular temperament which tempers out 420175/419904 and 205891132094649/204800000000000 in the 7-limit, which is supported by 243, 347, and 590 EDOs among others.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 34.581
2 69.162 25/24, 27/26
3 103.743 18/17, 33/31
4 138.324
5 172.905 21/19, 31/28
6 207.486 26/23
7 242.067 31/27
8 276.648 27/23
9 311.229 6/5
10 345.81 11/9
11 380.391
12 414.972 14/11, 33/26
13 449.553 22/17
14 484.134
15 518.715 23/17, 31/23
16 553.296
17 587.877
18 622.458 33/23
19 657.039 19/13
20 691.62
21 726.201
22 760.782 14/9
23 795.363
24 829.944 21/13, 29/18
25 864.525 28/17
26 899.106
27 933.687
28 968.268
29 1002.849
30 1037.43 31/17
31 1072.011 13/7
32 1106.592
33 1141.173 27/14, 29/15
34 1175.754
35 1210.335
36 1244.916
37 1279.497 23/11
38 1314.078
39 1348.659
40 1383.24
41 1417.821
42 1452.402
43 1486.983 26/11, 33/14
44 1521.564
45 1556.145 27/11
46 1590.726 5/2
47 1625.307 23/9
48 1659.888
49 1694.469
50 1729.05 19/7
51 1763.631
52 1798.212 17/6, 31/11
53 1832.793 26/9
54 1867.374
55 1901.955 3/1

Harmonics

Approximation of harmonics in 55edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +10.3 +0.0 -13.9 +14.7 +10.3 -14.5 -3.6 +0.0 -9.5 -1.6 -13.9
Relative (%) +29.9 +0.0 -40.2 +42.6 +29.9 -41.8 -10.3 +0.0 -27.5 -4.6 -40.2
Steps
(reduced)
35
(35)
55
(0)
69
(14)
81
(26)
90
(35)
97
(42)
104
(49)
110
(0)
115
(5)
120
(10)
124
(14)
Approximation of harmonics in 55edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -14.2 -4.1 +14.7 +6.8 +5.5 +10.3 -14.1 +0.8 -14.5 +8.7 +0.9
Relative (%) -40.9 -12.0 +42.6 +19.5 +16.0 +29.9 -40.8 +2.4 -41.8 +25.3 +2.7
Steps
(reduced)
128
(18)
132
(22)
136
(26)
139
(29)
142
(32)
145
(35)
147
(37)
150
(40)
152
(42)
155
(45)
157
(47)

Related regular temperaments

243&347 temperament

7-limit

Commas: 420175/419904, |-22 30 -11>

POTE generator: ~49/48 = 34.5742

Map: [<1 0 -2 2|, <0 55 150 28|]

EDOs: 243, 347, 590

11-limit

Commas: 137781/137500, 352947/352000, 16808715/16777216

POTE generator: ~49/48 = 34.5761

Map: [<1 0 -2 2 10|, <0 55 150 28 -227|]

EDOs: 243, 347, 590

13-limit

Commas: 4459/4455, 15379/15360, 67392/67375, 83349/83200

POTE generator: ~49/48 = 34.5762

Map: [<1 0 -2 2 10 2|, <0 55 150 28 -227 59|]

EDOs: 243, 347, 590