55edt
Jump to navigation
Jump to search
Prime factorization
5 × 11
Step size
34.581¢
Octave
35\55edt (1210.34¢) (→7\11edt)
Consistency limit
2
Distinct consistency limit
2
← 54edt | 55edt | 56edt → |
55EDT is the equal division of the third harmonic into 55 parts of 34.5810 cents each, corresponding to 34.7011 edo. It is related to the regular temperament which tempers out 420175/419904 and 205891132094649/204800000000000 in the 7-limit, which is supported by 243, 347, and 590 EDOs among others.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 34.581 | |
2 | 69.162 | 25/24, 27/26 |
3 | 103.743 | 18/17, 33/31 |
4 | 138.324 | |
5 | 172.905 | 21/19, 31/28 |
6 | 207.486 | 26/23 |
7 | 242.067 | 31/27 |
8 | 276.648 | 27/23 |
9 | 311.229 | 6/5 |
10 | 345.81 | 11/9 |
11 | 380.391 | |
12 | 414.972 | 14/11, 33/26 |
13 | 449.553 | 22/17 |
14 | 484.134 | |
15 | 518.715 | 23/17, 31/23 |
16 | 553.296 | |
17 | 587.877 | |
18 | 622.458 | 33/23 |
19 | 657.039 | 19/13 |
20 | 691.62 | |
21 | 726.201 | |
22 | 760.782 | 14/9 |
23 | 795.363 | |
24 | 829.944 | 21/13, 29/18 |
25 | 864.525 | 28/17 |
26 | 899.106 | |
27 | 933.687 | |
28 | 968.268 | |
29 | 1002.849 | |
30 | 1037.43 | 31/17 |
31 | 1072.011 | 13/7 |
32 | 1106.592 | |
33 | 1141.173 | 27/14, 29/15 |
34 | 1175.754 | |
35 | 1210.335 | |
36 | 1244.916 | |
37 | 1279.497 | 23/11 |
38 | 1314.078 | |
39 | 1348.659 | |
40 | 1383.24 | |
41 | 1417.821 | |
42 | 1452.402 | |
43 | 1486.983 | 26/11, 33/14 |
44 | 1521.564 | |
45 | 1556.145 | 27/11 |
46 | 1590.726 | 5/2 |
47 | 1625.307 | 23/9 |
48 | 1659.888 | |
49 | 1694.469 | |
50 | 1729.05 | 19/7 |
51 | 1763.631 | |
52 | 1798.212 | 17/6, 31/11 |
53 | 1832.793 | 26/9 |
54 | 1867.374 | |
55 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +10.3 | +0.0 | -13.9 | +14.7 | +10.3 | -14.5 | -3.6 | +0.0 | -9.5 | -1.6 | -13.9 |
Relative (%) | +29.9 | +0.0 | -40.2 | +42.6 | +29.9 | -41.8 | -10.3 | +0.0 | -27.5 | -4.6 | -40.2 | |
Steps (reduced) |
35 (35) |
55 (0) |
69 (14) |
81 (26) |
90 (35) |
97 (42) |
104 (49) |
110 (0) |
115 (5) |
120 (10) |
124 (14) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -14.2 | -4.1 | +14.7 | +6.8 | +5.5 | +10.3 | -14.1 | +0.8 | -14.5 | +8.7 | +0.9 |
Relative (%) | -40.9 | -12.0 | +42.6 | +19.5 | +16.0 | +29.9 | -40.8 | +2.4 | -41.8 | +25.3 | +2.7 | |
Steps (reduced) |
128 (18) |
132 (22) |
136 (26) |
139 (29) |
142 (32) |
145 (35) |
147 (37) |
150 (40) |
152 (42) |
155 (45) |
157 (47) |
Related regular temperaments
243&347 temperament
7-limit
Commas: 420175/419904, |-22 30 -11>
POTE generator: ~49/48 = 34.5742
Map: [<1 0 -2 2|, <0 55 150 28|]
11-limit
Commas: 137781/137500, 352947/352000, 16808715/16777216
POTE generator: ~49/48 = 34.5761
Map: [<1 0 -2 2 10|, <0 55 150 28 -227|]
13-limit
Commas: 4459/4455, 15379/15360, 67392/67375, 83349/83200
POTE generator: ~49/48 = 34.5762
Map: [<1 0 -2 2 10 2|, <0 55 150 28 -227 59|]