54edt
Jump to navigation
Jump to search
Prime factorization
2 × 33
Step size
35.2214¢
Octave
34\54edt (1197.53¢) (→17\27edt)
Consistency limit
7
Distinct consistency limit
7
← 53edt | 54edt | 55edt → |
Division of the third harmonic into 54 equal parts (54EDT) is related to 34 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 2.4728 cents compressed and the step size is about 35.2214 cents. It is consistent to the 7-integer-limit, but not to the 8-integer-limit. In comparison, 34edo is only consistent up to the 6-integer-limit.
Intervals
degree | cents value | hekts | corresponding JI intervals |
comments |
---|---|---|---|---|
0 | exact 1/1 | |||
1 | 35.2214 | 24.0741 | 50/49, 49/48 | |
2 | 70.4428 | 48.14815 | 25/24 | |
3 | 105.6642 | 72.2222 | 17/16 | |
4 | 140.8856 | 96.2963 | 13/12 | |
5 | 176.1069 | 120.3704 | 10/9 | |
6 | 211.3283 | 144.4444 | 26/23 | |
7 | 246.5497 | 168.5185 | 15/13 | |
8 | 281.7711 | 192.5926 | 20/17 | |
9 | 316.9925 | 216.6667 | 6/5 | |
10 | 352.2139 | 240.7407 | 11/9 | |
11 | 387.4353 | 264.8148 | 5/4 | |
12 | 422.6567 | 288.8889 | 23/18 | |
13 | 457.8781 | 312.963 | 13/10 | |
14 | 493.0994 | 337.037 | 4/3 | |
15 | 528.3208 | 361.1111 | 19/14 | |
16 | 563.5422 | 385.1852 | 18/13 | |
17 | 598.7636 | 409.2593 | 41/29, 140/99 | |
18 | 633.985 | 433.3333 | 13/9 | |
19 | 669.2064 | 457.4074 | 28/19 | |
20 | 704.4278 | 481.4815 | 3/2 | |
21 | 739.6492 | 505.5559 | 20/13 | |
22 | 774.8706 | 529.6296 | 36/23 | |
23 | 810.0919 | 553.7037 | 8/5 | |
24 | 845.3133 | 577.7778 | 44/27 | |
25 | 880.5347 | 601.85185 | 5/3 | |
26 | 915.7561 | 625.9259 | 17/10 | |
27 | 950.9775 | 650 | 26/15 | |
28 | 986.1989 | 674.074 | 23/13 | |
29 | 1021.4203 | 698.14815 | 9/5 | |
30 | 1056.6417 | 722.2222 | 81/44 | |
31 | 1091.8631 | 746.2963 | 15/8 | |
32 | 1127.0844 | 770.3704 | 23/12 | |
33 | 1162.3058 | 794.4444 | 49/25, 96/49 | |
34 | 1197.5272 | 818.5185 | 2/1 | |
35 | 1232.7486 | 842.5926 | 100/49, 49/24 | |
36 | 1267.97 | 866.6667 | 25/12 | |
37 | 1303.1914 | 890.7407 | 17/8 | |
38 | 1338.4128 | 914.8148 | 13/6 | |
39 | 1373.6342 | 938.8889 | 20/9, 42/19 | |
40 | 1408.8556 | 962.963 | 88/39 | |
41 | 1444.0769 | 987.037 | 76/33 | |
42 | 1479.2983 | 1011.1111 | 47/20 | |
43 | 1514.5197 | 1035.1852 | 12/5 | |
44 | 1549.7411 | 1059.2593 | 27/11 | |
45 | 1584.9625 | 1083.3333 | 5/2 | |
46 | 1620.1839 | 1107.4074 | 51/20 | |
47 | 1655.4053 | 1131.4815 | 13/5 | |
48 | 1690.6267 | 1155.5556 | 8/3 | |
49 | 1725.8481 | 1179.6297 | 19/7 | |
50 | 1761.0694 | 1203.7037 | 36/13 | |
51 | 1796.2908 | 1227.7778 | 48/17 | |
52 | 1831.5122 | 1251.85185 | 72/25 | |
53 | 1866.7336 | 1275.5926 | 50/17 | |
54 | 1901.9550 | 1300 | exact 3/1 | just perfect fifth plus an octave |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.5 | +0.0 | -4.9 | -3.8 | -2.5 | +12.4 | -7.4 | +0.0 | -6.3 | +4.8 | -4.9 |
Relative (%) | -7.0 | +0.0 | -14.0 | -10.9 | -7.0 | +35.3 | -21.1 | +0.0 | -17.9 | +13.6 | -14.0 | |
Steps (reduced) |
34 (34) |
54 (0) |
68 (14) |
79 (25) |
88 (34) |
96 (42) |
102 (48) |
108 (0) |
113 (5) |
118 (10) |
122 (14) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.6 | +10.0 | -3.8 | -9.9 | -9.2 | -2.5 | +9.6 | -8.8 | +12.4 | +2.3 | -4.2 |
Relative (%) | -7.5 | +28.3 | -10.9 | -28.1 | -26.1 | -7.0 | +27.2 | -24.9 | +35.3 | +6.6 | -11.9 | |
Steps (reduced) |
126 (18) |
130 (22) |
133 (25) |
136 (28) |
139 (31) |
142 (34) |
145 (37) |
147 (39) |
150 (42) |
152 (44) |
154 (46) |