54edt

From Xenharmonic Wiki
Jump to: navigation, search

Division of the third harmonic into 54 equal parts (54EDT) is related to 34 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 2.4728 cents compressed and the step size is about 35.2214 cents. It is consistent to the 7-integer-limit, but not to the 8-integer-limit. In comparison, 34edo is only consistent up to the 6-integer-limit.

degree cents value hekts corresponding
JI intervals
comments
0 exact 1/1
1 35.2214 24.0741 50/49, 49/48
2 70.4428 48.14815 25/24
3 105.6642 72.2222 17/16
4 140.8856 96.2963 13/12
5 176.1069 120.3704 10/9
6 211.3283 144.4444 26/23
7 246.5497 168.5185 15/13
8 281.7711 192.5926 20/17
9 316.9925 216.6667 6/5
10 352.2139 240.7407 11/9
11 387.4353 264.8148 5/4
12 422.6567 288.8889 23/18
13 457.8781 312.963 13/10
14 493.0994 337.037 4/3
15 528.3208 361.1111 19/14
16 563.5422 385.1852 18/13
17 598.7636 409.2593 41/29, 140/99
18 633.985 433.3333 13/9
19 669.2064 457.4074 28/19
20 704.4278 481.4815 3/2
21 739.6492 505.5559 20/13
22 774.8706 529.6296 36/23
23 810.0919 553.7037 8/5
24 845.3133 577.7778 44/27
25 880.5347 601.85185 5/3
26 915.7561 625.9259 17/10
27 950.9775 650 26/15
28 986.1989 674.074 23/13
29 1021.4203 698.14815 9/5
30 1056.6417 722.2222 81/44
31 1091.8631 746.2963 15/8
32 1127.0844 770.3704 23/12
33 1162.3058 794.4444 49/25, 96/49
34 1197.5272 818.5185 2/1
35 1232.7486 842.5926 100/49, 49/24
36 1267.97 866.6667 25/12
37 1303.1914 890.7407 17/8
38 1338.4128 914.8148 13/6
39 1373.6342 938.8889 20/9, 42/19
40 1408.8556 962.963 88/39
41 1444.0769 987.037 76/33
42 1479.2983 1011.1111 47/20
43 1514.5197 1035.1852 12/5
44 1549.7411 1059.2593 27/11
45 1584.9625 1083.3333 5/2
46 1620.1839 1107.4074 51/20
47 1655.4053 1131.4815 13/5
48 1690.6267 1155.5556 8/3
49 1725.8481 1179.6297 19/7
50 1761.0694 1203.7037 36/13
51 1796.2908 1227.7778 48/17
52 1831.5122 1251.85185 72/25
53 1866.7336 1275.5926 50/17
54 1901.9550 1300 exact 3/1 just perfect fifth plus an octave