53edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 52edt 53edt 54edt →
Prime factorization 53 (prime)
Step size 35.8859¢ 
Octave 33\53edt (1184.24¢)
Consistency limit 2
Distinct consistency limit 2

53EDT is the equal division of the third harmonic into 53 parts of 35.8859 cents each, corresponding to 33.4393 edo. It has a generally sharp tendency, in the sense that if 3 is pure, 5, 7, 11, 13, and 17 are all sharp. It tempers out 413343/390625 and 823543/820125 in the 7-limit; 891/875, 3087/3025, and 164025/161051 in the 11-limit; 637/625, 729/715, 847/845, and 1575/1573 in the 13-limit; 189/187, 429/425, 459/455, and 833/825 in the 17-limit; 171/169, 247/245, 361/357, and 855/847 in the 19-limit (no-twos subgroup).

Harmonics

Approximation of harmonics in 53edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -15.8 +0.0 +4.4 +12.8 -15.8 +4.5 -11.4 +0.0 -3.0 +11.5 +4.4
Relative (%) -43.9 +0.0 +12.1 +35.6 -43.9 +12.4 -31.8 +0.0 -8.3 +31.9 +12.1
Steps
(reduced)
33
(33)
53
(0)
67
(14)
78
(25)
86
(33)
94
(41)
100
(47)
106
(0)
111
(5)
116
(10)
120
(14)
Approximation of harmonics in 53edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +9.3 -11.3 +12.8 +8.7 +11.4 -15.8 -1.7 +17.1 +4.5 -4.3 -9.5
Relative (%) +26.0 -31.5 +35.6 +24.3 +31.8 -43.9 -4.8 +47.8 +12.4 -12.0 -26.5
Steps
(reduced)
124
(18)
127
(21)
131
(25)
134
(28)
137
(31)
139
(33)
142
(36)
145
(39)
147
(41)
149
(43)
151
(45)

Intervals

degree cents value hekts corresponding
JI intervals
comments
0 exact 1/1
1 35.8859 24.5283 50/49, 49/48
2 71.7719 49.0566 25/24
3 107.6578 73.5849 17/16, 16/15
4 143.5438 98.1132 38/35
5 179.4297 122.6415 51/46, 132/119
6 215.3157 147.1698 17/15
7 251.2016 171.6981 15/13
8 287.0875 196.2264 33/28, 13/11
9 322.9735 220.7547 6/5
10 358.8594 245.283 16/13
11 394.7454 269.8113 5/4, 49/39
12 430.6313 594.3396 9/7, 50/39
13 466.5173 318.8679 21/16
14 502.4032 343.3962 4/3, 171/128
15 538.2892 367.9245 15/11
16 574.1751 392.4528 39/28
17 610.061 416.9811 10/7
18 645.947 441.5094 35/24
19 681.8329 466.0377 126/85, 40/27
20 717.7189 490.566 pseudo-3/2
21 753.6048 515.0943 17/11
22 789.4908 539.6226 30/19
23 825.3767 564.1509 13/8
24 861.2626 588.67945
25 897.1486 613.20755 42/25, 32/19
26 933.0345 637.73585 12/7
27 968.9205 662.26415 7/4
28 1004.8064 686.79245 25/14, 57/32
29 1040.6924 711.32075
30 1076.5783 735.8491 24/13
31 1112.4642 760.3774 19/10
32 1148.3502 784.9057 33/17
33 1184.2361 809.434 pseudooctave
34 1220.1221 833.9623 85/42, 81/40
35 1256.008 858.4906 95/46
36 1291.894 883.0189 21/10
37 1327.7799 907.5472 28/13
38 1363.6658 932.0755 11/5
39 1399.5518 956.6038 9/4, 128/57
40 1435.4377 981.1321 16/7
41 1471.3237 1005.3304 7/3, 117/50
42 1507.2096 1303.1887 12/5, 117/49
43 1543.0956 1054.717 39/16
44 1578.9815 1079.2453 5/2
45 1614.8675 1130.7736 28/11, 33/13
46 1650.7534 1128.3019 13/5
47 1686.6393 1152.8302 45/17
48 1722.5253 1177.3585 119/44
49 1758.4112 1201.8868 105/38
50 1794.2972 1226.4151 48/17, 45/16
51 1830.1831 1250.9434 72/25
52 1866.0691 1275.4717 147/50, 144/49
53 1901.955 1300 exact 3/1