36ed7

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 35ed736ed737ed7 →
Prime factorization 22 × 32
Step size 93.5785¢ 
Octave 13\36ed7 (1216.52¢)
Twelfth 20\36ed7 (1871.57¢) (→5\9ed7)
Consistency limit 2
Distinct consistency limit 2
Special properties

36 equal divisions of the 7th harmonic (abbreviated 36ed7) is a nonoctave tuning system that divides the interval of 7/1 into 36 equal parts of about 93.6 ¢ each. Each step represents a frequency ratio of 71/36, or the 36th root of 7.

One step of 36ed7 is very close to Boethius' semitone, 19/18, 93.6030 cents. Making 36ed7 close to the equal multiplication of 19/18 (1ed19/18).

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 93.578 18/17, 19/18
2 187.157 19/17, 29/26
3 280.735
4 374.314 26/21
5 467.892 17/13
6 561.471 18/13, 29/21
7 655.049 19/13, 22/15
8 748.628 17/11
9 842.206
10 935.785 12/7
11 1029.363
12 1122.942 21/11, 23/12
13 1216.52
14 1310.099
15 1403.677
16 1497.256 26/11
17 1590.834 5/2
18 1684.413 29/11
19 1777.991 14/5
20 1871.57
21 1965.148 25/8
22 2058.727 23/7
23 2152.305
24 2245.884 11/3
25 2339.462
26 2433.041
27 2526.619
28 2620.198
29 2713.776 24/5
30 2807.355
31 2900.933
32 2994.512
33 3088.09
34 3181.669
35 3275.247
36 3368.826 7/1

Harmonics

Approximation of harmonics in 36ed7
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +16.5 -30.4 +33.0 +21.0 -13.9 +0.0 -44.0 +32.8 +37.6 -33.9 +2.7
Relative (%) +17.7 -32.5 +35.3 +22.5 -14.8 +0.0 -47.0 +35.1 +40.1 -36.2 +2.8
Steps
(reduced)
13
(13)
20
(20)
26
(26)
30
(30)
33
(33)
36
(0)
38
(2)
41
(5)
43
(7)
44
(8)
46
(10)
Approximation of harmonics in 36ed7
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -42.3 +16.5 -9.3 -27.5 -38.9 -44.2 -44.3 -39.5 -30.4 -17.3 -0.7
Relative (%) -45.2 +17.7 -10.0 -29.4 -41.5 -47.3 -47.3 -42.2 -32.5 -18.5 -0.8
Steps
(reduced)
47
(11)
49
(13)
50
(14)
51
(15)
52
(16)
53
(17)
54
(18)
55
(19)
56
(20)
57
(21)
58
(22)