36ed7

From Xenharmonic Wiki
Jump to navigation Jump to search
← 35ed7 36ed7 37ed7 →
Prime factorization 22 × 32
Step size 93.5785¢ 
Octave 13\36ed7 (1216.52¢)
Twelfth 20\36ed7 (1871.57¢) (→5\9ed7)
Consistency limit 2
Distinct consistency limit 2
Special properties

36 equal divisions of the 7th harmonic (abbreviated 36ed7) is a nonoctave tuning system that divides the interval of 7/1 into 36 equal parts of about 93.6 ¢ each. Each step represents a frequency ratio of 71/36, or the 36th root of 7.

One step of 36ed7 is very close to Boethius' semitone, 19/18, 93.6030 cents. Making 36ed7 close to the equal multiplication of 19/18 (1ed19/18).

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 93.6 18/17, 19/18
2 187.2 19/17, 29/26
3 280.7
4 374.3 26/21
5 467.9 17/13
6 561.5 18/13, 29/21
7 655 19/13, 22/15
8 748.6 17/11
9 842.2
10 935.8 12/7
11 1029.4
12 1122.9 21/11, 23/12
13 1216.5
14 1310.1
15 1403.7
16 1497.3 26/11
17 1590.8 5/2
18 1684.4 29/11
19 1778 14/5
20 1871.6
21 1965.1 25/8
22 2058.7 23/7
23 2152.3
24 2245.9 11/3
25 2339.5
26 2433
27 2526.6
28 2620.2
29 2713.8 24/5
30 2807.4
31 2900.9
32 2994.5
33 3088.1
34 3181.7
35 3275.2
36 3368.8 7/1

Harmonics

Approximation of harmonics in 36ed7
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +16.5 -30.4 +33.0 +21.0 -13.9 +0.0 -44.0 +32.8 +37.6 -33.9 +2.7
Relative (%) +17.7 -32.5 +35.3 +22.5 -14.8 +0.0 -47.0 +35.1 +40.1 -36.2 +2.8
Steps
(reduced)
13
(13)
20
(20)
26
(26)
30
(30)
33
(33)
36
(0)
38
(2)
41
(5)
43
(7)
44
(8)
46
(10)
Approximation of harmonics in 36ed7
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -42.3 +16.5 -9.3 -27.5 -38.9 -44.2 -44.3 -39.5 -30.4 -17.3 -0.7
Relative (%) -45.2 +17.7 -10.0 -29.4 -41.5 -47.3 -47.3 -42.2 -32.5 -18.5 -0.8
Steps
(reduced)
47
(11)
49
(13)
50
(14)
51
(15)
52
(16)
53
(17)
54
(18)
55
(19)
56
(20)
57
(21)
58
(22)


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.