9ed7

From Xenharmonic Wiki
Jump to navigation Jump to search
← 8ed7 9ed7 10ed7 →
Prime factorization 32
Step size 374.314¢ 
Octave 3\9ed7 (1122.94¢) (→1\3ed7)
Twelfth 5\9ed7 (1871.57¢)
(semiconvergent)
Consistency limit 6
Distinct consistency limit 3

9 equal divisions of the 7th harmonic (abbreviated 9ed7) is a nonoctave tuning system that divides the interval of 7/1 into 9 equal parts of about 374⁠ ⁠¢ each. Each step represents a frequency ratio of 71/9, or the 9th root of 7.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 374.3 5/4, 11/9, 17/14, 21/17
2 748.6 11/7, 14/9, 17/11
3 1122.9 15/8, 17/9, 21/11
4 1497.3 7/3, 12/5, 17/7
5 1871.6 3/1
6 2245.9 11/3, 18/5
7 2620.2 9/2
8 2994.5 17/3
9 3368.8 7/1

Harmonics

Approximation of prime harmonics in 9ed7
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -77 -30 -166 +0 -34 +51 -39 +143 +186 +159 +44
Relative (%) -20.6 -8.1 -44.4 +0.0 -9.0 +13.7 -10.4 +38.2 +49.8 +42.6 +11.8
Steps
(reduced)
3
(3)
5
(5)
7
(7)
9
(0)
11
(2)
12
(3)
13
(4)
14
(5)
15
(6)
16
(7)
16
(7)
Approximation of prime harmonics in 9ed7
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +112 -66 -148 +72 -136 +53 -5 -167 +107 +58 -78
Relative (%) +29.9 -17.6 -39.6 +19.3 -36.3 +14.1 -1.3 -44.7 +28.5 +15.6 -20.9
Steps
(reduced)
17
(8)
17
(8)
17
(8)
18
(0)
18
(0)
19
(1)
19
(1)
19
(1)
20
(2)
20
(2)
20
(2)


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.