9ed7
Jump to navigation
Jump to search
Prime factorization
32
Step size
374.314¢
Octave
3\9ed7 (1122.94¢) (→1\3ed7)
Twelfth
5\9ed7 (1871.57¢)
(semiconvergent)
Consistency limit
6
Distinct consistency limit
3
← 8ed7 | 9ed7 | 10ed7 → |
(semiconvergent)
9 equal divisions of the 7th harmonic (abbreviated 9ed7) is a nonoctave tuning system that divides the interval of 7/1 into 9 equal parts of about 374 ¢ each. Each step represents a frequency ratio of 71/9, or the 9th root of 7.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 374.3 | 5/4, 11/9, 17/14, 21/17 |
2 | 748.6 | 11/7, 14/9, 17/11 |
3 | 1122.9 | 15/8, 17/9, 21/11 |
4 | 1497.3 | 7/3, 12/5, 17/7 |
5 | 1871.6 | 3/1 |
6 | 2245.9 | 11/3, 18/5 |
7 | 2620.2 | 9/2 |
8 | 2994.5 | 17/3 |
9 | 3368.8 | 7/1 |
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -77 | -30 | -166 | +0 | -34 | +51 | -39 | +143 | +186 | +159 | +44 |
Relative (%) | -20.6 | -8.1 | -44.4 | +0.0 | -9.0 | +13.7 | -10.4 | +38.2 | +49.8 | +42.6 | +11.8 | |
Steps (reduced) |
3 (3) |
5 (5) |
7 (7) |
9 (0) |
11 (2) |
12 (3) |
13 (4) |
14 (5) |
15 (6) |
16 (7) |
16 (7) |
Harmonic | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 | 73 | 79 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +112 | -66 | -148 | +72 | -136 | +53 | -5 | -167 | +107 | +58 | -78 |
Relative (%) | +29.9 | -17.6 | -39.6 | +19.3 | -36.3 | +14.1 | -1.3 | -44.7 | +28.5 | +15.6 | -20.9 | |
Steps (reduced) |
17 (8) |
17 (8) |
17 (8) |
18 (0) |
18 (0) |
19 (1) |
19 (1) |
19 (1) |
20 (2) |
20 (2) |
20 (2) |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |