8ed7

From Xenharmonic Wiki
Jump to navigation Jump to search
← 7ed7 8ed7 9ed7 →
Prime factorization 23
Step size 421.103¢ 
Octave 3\8ed7 (1263.31¢)
(semiconvergent)
Twelfth 5\8ed7 (2105.52¢)
Consistency limit 5
Distinct consistency limit 2

8 equal divisions of the 7th harmonic (abbreviated 8ed7) is a nonoctave tuning system that divides the interval of 7/1 into 8 equal parts of about 421⁠ ⁠¢ each. Each step represents a frequency ratio of 71/8, or the 8th root of 7.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 421.1 5/4, 13/10, 14/11, 17/13, 22/17
2 842.2 5/3, 8/5, 13/8, 21/13
3 1263.3 17/8, 21/10
4 1684.4 8/3, 13/5, 19/7, 21/8
5 2105.5 10/3, 17/5
6 2526.6 13/3, 17/4, 21/5, 22/5
7 2947.7 11/2
8 3368.8 7/1

Harmonics

Approximation of prime harmonics in 8ed7
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +63 +204 +161 +0 +60 +192 +148 -44 +46 +66 -50
Relative (%) +15.0 +48.3 +38.3 +0.0 +14.2 +45.5 +35.2 -10.5 +10.9 +15.6 -11.8
Steps
(reduced)
3
(3)
5
(5)
7
(7)
8
(0)
10
(2)
11
(3)
12
(4)
12
(4)
13
(5)
14
(6)
14
(6)
Approximation of prime harmonics in 8ed7
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) +65 -113 -195 +72 -136 +100 +42 -121 +200 +152 +15
Relative (%) +15.5 -26.7 -46.3 +17.1 -32.3 +23.6 +9.9 -28.6 +47.5 +36.1 +3.6
Steps
(reduced)
15
(7)
15
(7)
15
(7)
16
(0)
16
(0)
17
(1)
17
(1)
17
(1)
18
(2)
18
(2)
18
(2)


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.