31edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 30edt31edt32edt →
Prime factorization 31 (prime)
Step size 61.3534¢ 
Octave 20\31edt (1227.07¢)
Consistency limit 2
Distinct consistency limit 2

31edt divides the tritave into equal parts of 61.353 cents, corresponding to the non-octave third tone scale of 39edo where each degree gets ~.185 cents flatter than the corresponding degree of 39edo. It supports the same higher-limit meantone temperament as 12 edt with better intonation of triads. It also contains a flat version of the BP nonatonic scale and the fair Sigma and false Father scales.

Intervals

See also: Specific intervals in 31edt

Steps Cents Approximate Ratios
0 0 1/1
1 61.353 27/26
2 122.707
3 184.06 10/9, 19/17
4 245.414 15/13
5 306.767
6 368.12 21/17, 26/21
7 429.474 9/7
8 490.827
9 552.18 26/19
10 613.534 10/7, 27/19
11 674.887
12 736.241 23/15, 26/17
13 797.594 27/17
14 858.947 18/11
15 920.301 17/10
16 981.654 23/13
17 1043.008 11/6, 20/11
18 1104.361 17/9, 19/10
19 1165.714
20 1227.068
21 1288.421 19/9, 21/10
22 1349.775
23 1411.128
24 1472.481 7/3
25 1533.835 17/7
26 1595.188
27 1656.541 13/5
28 1717.895 27/10
29 1779.248
30 1840.602 26/9
31 1901.955 3/1

Harmonics

Approximation of harmonics in 31edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +27.1 +0.0 -7.2 -25.4 +27.1 +5.6 +19.8 +0.0 +1.7 +20.7 -7.2
Relative (%) +44.1 +0.0 -11.8 -41.4 +44.1 +9.1 +32.4 +0.0 +2.7 +33.8 -11.8
Steps
(reduced)
20
(20)
31
(0)
39
(8)
45
(14)
51
(20)
55
(24)
59
(28)
62
(0)
65
(3)
68
(6)
70
(8)
Approximation of harmonics in 31edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -23.1 -28.7 -25.4 -14.4 +3.3 +27.1 -5.2 +28.7 +5.6 -13.6 -29.2
Relative (%) -37.6 -46.7 -41.4 -23.5 +5.4 +44.1 -8.4 +46.8 +9.1 -22.1 -47.6
Steps
(reduced)
72
(10)
74
(12)
76
(14)
78
(16)
80
(18)
82
(20)
83
(21)
85
(23)
86
(24)
87
(25)
88
(26)