73ed7
Jump to navigation
Jump to search
Prime factorization
73 (prime)
Step size
46.1483¢
Octave
26\73ed7 (1199.86¢)
(convergent)
Twelfth
41\73ed7 (1892.08¢)
Consistency limit
13
Distinct consistency limit
9
← 72ed7 | 73ed7 | 74ed7 → |
(convergent)
Division of the 7th harmonic into 73 equal parts (73ed7) is almost identical to 26 edo, but with the 7/1 rather than the 2/1 being just. The octave is slightly compressed (about 0.1442 cents) and the step size is about 46.1483 cents. The patent val has a generally flat tendency for harmonics up to 21, with exception for 11th harmonic.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 46.1 | 36/35, 37/36, 38/37 |
2 | 92.3 | 19/18, 20/19 |
3 | 138.4 | 13/12 |
4 | 184.6 | 10/9 |
5 | 230.7 | 8/7 |
6 | 276.9 | 34/29 |
7 | 323 | 35/29 |
8 | 369.2 | 21/17, 26/21 |
9 | 415.3 | 14/11, 33/26 |
10 | 461.5 | 17/13 |
11 | 507.6 | |
12 | 553.8 | 11/8 |
13 | 599.9 | 17/12, 24/17 |
14 | 646.1 | 16/11, 29/20 |
15 | 692.2 | |
16 | 738.4 | 26/17 |
17 | 784.5 | 11/7 |
18 | 830.7 | 21/13, 34/21 |
19 | 876.8 | |
20 | 923 | 29/17 |
21 | 969.1 | 7/4 |
22 | 1015.3 | 9/5 |
23 | 1061.4 | 24/13 |
24 | 1107.6 | 36/19 |
25 | 1153.7 | 35/18, 37/19 |
26 | 1199.9 | 2/1 |
27 | 1246 | 37/18 |
28 | 1292.2 | 19/9 |
29 | 1338.3 | 13/6 |
30 | 1384.4 | 20/9 |
31 | 1430.6 | 16/7 |
32 | 1476.7 | |
33 | 1522.9 | |
34 | 1569 | |
35 | 1615.2 | 28/11, 33/13 |
36 | 1661.3 | 34/13 |
37 | 1707.5 | |
38 | 1753.6 | 11/4 |
39 | 1799.8 | 17/6 |
40 | 1845.9 | 29/10, 32/11 |
41 | 1892.1 | |
42 | 1938.2 | |
43 | 1984.4 | 22/7 |
44 | 2030.5 | |
45 | 2076.7 | |
46 | 2122.8 | |
47 | 2169 | 7/2 |
48 | 2215.1 | 18/5 |
49 | 2261.3 | |
50 | 2307.4 | |
51 | 2353.6 | 35/9 |
52 | 2399.7 | 4/1 |
53 | 2445.9 | 37/9 |
54 | 2492 | 38/9 |
55 | 2538.2 | 13/3 |
56 | 2584.3 | |
57 | 2630.5 | 32/7 |
58 | 2676.6 | |
59 | 2722.7 | |
60 | 2768.9 | |
61 | 2815 | |
62 | 2861.2 | |
63 | 2907.3 | |
64 | 2953.5 | 11/2 |
65 | 2999.6 | 17/3 |
66 | 3045.8 | 29/5 |
67 | 3091.9 | |
68 | 3138.1 | |
69 | 3184.2 | |
70 | 3230.4 | |
71 | 3276.5 | |
72 | 3322.7 | |
73 | 3368.8 | 7/1 |
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.1 | -9.9 | -17.4 | +0.0 | +2.0 | -10.3 | -13.2 | -21.2 | +17.2 | -14.9 | +8.1 |
Relative (%) | -0.3 | -21.4 | -37.7 | +0.0 | +4.4 | -22.3 | -28.7 | -45.9 | +37.3 | -32.3 | +17.5 | |
Steps (reduced) |
26 (26) |
41 (41) |
60 (60) |
73 (0) |
90 (17) |
96 (23) |
106 (33) |
110 (37) |
118 (45) |
126 (53) |
129 (56) |
Harmonic | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 | 73 | 79 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -21.3 | -14.4 | -4.6 | -20.2 | +2.6 | +1.5 | -10.0 | +12.1 | +4.0 | +2.1 | +3.8 |
Relative (%) | -46.2 | -31.3 | -10.0 | -43.7 | +5.6 | +3.3 | -21.8 | +26.3 | +8.7 | +4.5 | +8.2 | |
Steps (reduced) |
135 (62) |
139 (66) |
141 (68) |
144 (71) |
149 (3) |
153 (7) |
154 (8) |
158 (12) |
160 (14) |
161 (15) |
164 (18) |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |