48edt

From Xenharmonic Wiki
Jump to navigation Jump to search
← 47edt 48edt 49edt →
Prime factorization 24 × 3
Step size 39.6241¢ 
Octave 30\48edt (1188.72¢) (→5\8edt)
Consistency limit 2
Distinct consistency limit 2
Special properties

48 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 48edt or 48ed3), is a nonoctave tuning system that divides the interval of 3/1 into 48 equal parts of about 39.6 ¢ each. Each step represents a frequency ratio of 31/48, or the 48th root of 3.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 39.6
2 79.2 22/21, 23/22
3 118.9 15/14, 29/27, 31/29
4 158.5 23/21
5 198.1 19/17, 28/25
6 237.7 31/27
7 277.4 27/23
8 317 6/5
9 356.6 27/22
10 396.2 29/23
11 435.9 9/7
12 475.5 29/22
13 515.1 31/23
14 554.7 29/21
15 594.4 31/22
16 634 13/9
17 673.6 31/21
18 713.2
19 752.9 17/11
20 792.5
21 832.1 21/13
22 871.7
23 911.4 22/13
24 951 19/11, 26/15
25 990.6 23/13
26 1030.2
27 1069.8 13/7
28 1109.5
29 1149.1
30 1188.7
31 1228.3
32 1268 25/12, 27/13
33 1307.6
34 1347.2
35 1386.8 29/13
36 1426.5
37 1466.1 7/3
38 1505.7 31/13
39 1545.3 22/9
40 1585 5/2
41 1624.6 23/9
42 1664.2
43 1703.8
44 1743.5
45 1783.1 14/5
46 1822.7
47 1862.3
48 1902 3/1

Harmonics

Approximation of harmonics in 48edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -11.3 +0.0 +17.1 -12.6 -11.3 -0.8 +5.8 +0.0 +15.7 +9.2 +17.1
Relative (%) -28.5 +0.0 +43.1 -31.9 -28.5 -2.0 +14.6 +0.0 +39.7 +23.2 +43.1
Steps
(reduced)
30
(30)
48
(0)
61
(13)
70
(22)
78
(30)
85
(37)
91
(43)
96
(0)
101
(5)
105
(9)
109
(13)
Approximation of harmonics in 48edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -2.6 -12.1 -12.6 -5.5 +8.4 -11.3 +14.0 +4.4 -0.8 -2.1 +0.2
Relative (%) -6.6 -30.4 -31.9 -13.9 +21.3 -28.5 +35.3 +11.2 -2.0 -5.2 +0.6
Steps
(reduced)
112
(16)
115
(19)
118
(22)
121
(25)
124
(28)
126
(30)
129
(33)
131
(35)
133
(37)
135
(39)
137
(41)


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.