20edf
Jump to navigation
Jump to search
Prime factorization
22 × 5
Step size
35.0978¢
Octave
34\20edf (1193.32¢) (→17\10edf)
Twelfth
54\20edf (1895.28¢) (→27\10edf)
Consistency limit
7
Distinct consistency limit
6
← 19edf | 20edf | 21edf → |
20edf is very close to the Carlos Gamma tuning.
Intervals
The first steps up to two just perfect fifths should give a feeling of the granularity of this system…
Degrees | Cents |
---|---|
1 | 35.1 |
2 | 70.2 |
3 | 105.29 |
4 | 140.39 |
5 | 175.49 |
6 | 210.59 |
7 | 245.68 |
8 | 280.78 |
9 | 315.88 |
10 | 350.98 |
11 | 386.075 |
12 | 421.17 |
13 | 456.27 |
14 | 491.37 |
15 | 526.47 |
16 | 561.56 |
17 | 596.66 |
18 | 631.76 |
19 | 666.86 |
20 | 701.955 |
21 | 737.05 |
22 | 772.15 |
23 | 807.25 |
24 | 842.35 |
25 | 877.44 |
26 | 912.54 |
27 | 947.64 |
28 | 982.74 |
29 | 1017.835 |
30 | 1052.93 |
31 | 1088.03 |
32 | 1123.13 |
33 | 1158.23 |
34 | 1193.32 |
35 | 1228.42 |
36 | 1263.52 |
37 | 1298.62 |
38 | 1333.715 |
39 | 1368.81 |
40 | 1403.91 |
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -6.7 | -6.7 | -13.6 | +0.6 | -9.8 | +16.9 | +8.7 | -8.3 | +11.9 | -3.4 | -13.5 |
Relative (%) | -19.0 | -19.0 | -38.7 | +1.6 | -27.9 | +48.1 | +24.9 | -23.8 | +33.8 | -9.5 | -38.5 | |
Steps (reduced) |
34 (14) |
54 (14) |
79 (19) |
96 (16) |
118 (18) |
127 (7) |
140 (0) |
145 (5) |
155 (15) |
166 (6) |
169 (9) |
Harmonic | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 | 73 | 79 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.9 | -6.2 | +16.7 | +3.1 | +5.7 | -4.5 | +8.0 | -14.1 | -9.2 | +12.9 | +16.6 |
Relative (%) | -11.2 | -17.6 | +47.5 | +8.7 | +16.1 | -12.9 | +22.7 | -40.1 | -26.1 | +36.9 | +47.2 | |
Steps (reduced) |
178 (18) |
183 (3) |
186 (6) |
190 (10) |
196 (16) |
201 (1) |
203 (3) |
207 (7) |
210 (10) |
212 (12) |
216 (16) |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |