10edf

From Xenharmonic Wiki
Jump to navigation Jump to search
← 9edf 10edf 11edf →
Prime factorization 2 × 5
Step size 70.1955¢ 
Octave 17\10edf (1193.32¢)
(semiconvergent)
Twelfth 27\10edf (1895.28¢)
(semiconvergent)
Consistency limit 7
Distinct consistency limit 4

Division of the just perfect fifth into 10 equal parts (10EDF) is related to 17 edo, but with the 3/2 rather than the 2/1 being just. The octave is about 6.6765 cents compressed and the step size is about 70.1955 cents. It is consistent to the 7-integer-limit, but not to the 8-integer-limit. In comparison, 17edo is only consistent up to the 4-integer-limit.

Lookalikes: 17edo, 27edt

Intervals

degree Neptunian notation using 8\10edf Neapolitan notation using 3/10edf
0 C F
1 70.1955 ^C, vDb F^, Gb
2 140.391 C#, Db F#, Gd
3 210.5865 vD G
4 280.782 D G^, Ab
5 350.9775 ^D, vE G#, Ad
6 421.173 E A
7 491.3685 ^E, vF A^, Hb
8 561.564 F A#, Hd
9 631.7595 ^F, vC H
10 701.955 C B
11 772.1505 ^C, vDb B^, Cb
12 842.346 C#, Db B#, Cd
13 912.5415 vD C
14 982.737 D C^, Db
15 1052.9325 ^D, vE C#, Dd
16 1123.128 E D
17 1193.3235 ^E, vF D^, Eb
18 1263.519 F D#, Eb
19 1333.7145 ^F, vC E
20 1403.91 C F

Harmonics

Approximation of harmonics in 10edf
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -6.7 -6.7 -13.4 +21.5 -13.4 +0.6 -20.0 -13.4 +14.8 -9.8 -20.0
Relative (%) -9.5 -9.5 -19.0 +30.6 -19.0 +0.8 -28.5 -19.0 +21.1 -13.9 -28.5
Steps
(reduced)
17
(7)
27
(7)
34
(4)
40
(0)
44
(4)
48
(8)
51
(1)
54
(4)
57
(7)
59
(9)
61
(1)
Approximation of harmonics in 10edf
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -18.2 -6.1 +14.8 -26.7 +8.7 -20.0 +26.8 +8.2 -6.1 -16.5 -23.2
Relative (%) -25.9 -8.7 +21.1 -38.0 +12.4 -28.5 +38.1 +11.6 -8.7 -23.4 -33.1
Steps
(reduced)
63
(3)
65
(5)
67
(7)
68
(8)
70
(0)
71
(1)
73
(3)
74
(4)
75
(5)
76
(6)
77
(7)

Music