11edf

From Xenharmonic Wiki
Jump to navigation Jump to search
← 10edf 11edf 12edf →
Prime factorization 11 (prime)
Step size 63.8141¢ 
Octave 19\11edf (1212.47¢)
Twelfth 30\11edf (1914.42¢)
Consistency limit 7
Distinct consistency limit 4

11edf is the equal division of the just perfect fifth into 11 parts of 63.8141 cents each, corresponding to 18.8046 edo (similar to every fifth step of 94edo). It is similar to 19edo and nearly identical to Carlos Beta.

While the fifth is just, the fourth is very sharp and significantly less accurate than in 19edo, being about four cents flat of that of 7edo.

11edf represents the upper bound of the phoenix tuning range. 11edf benefits from all the desirable properties of phoenix tuning systems.

Harmonics

Approximation of harmonics in 11edf
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Error Absolute (¢) +12.47 +12.47 +24.94 +21.51 +24.94 +13.32 -26.41 +24.94 -29.84 -3.40 -26.41 +26.46 +25.79 -29.84 -13.94
Relative (%) +19.5 +19.5 +39.1 +33.7 +39.1 +20.9 -41.4 +39.1 -46.8 -5.3 -41.4 +41.5 +40.4 -46.8 -21.8
Steps
(reduced)
19
(8)
30
(8)
38
(5)
44
(0)
49
(5)
53
(9)
56
(1)
60
(5)
62
(7)
65
(10)
67
(1)
70
(4)
72
(6)
73
(7)
75
(9)

Intervals

Degree Cent value Corresponding
JI intervals
Comments
0 exact 1/1
1 63.8141 (28/27), (27/26)
2 127.6282 14/13
3 191.4423
4 255.2564
5 319.07045 6/5
6 382.8845 5/4
7 446.6986
8 510.5127
9 574.3268 39/28
10 638.1409 (13/9)
11 701.955 exact 3/2 just perfect fifth
12 765.7691 14/9, 81/52
13 828.5732 21/13
14 893.3973
15 956.2114
16 1020.0255 9/5
17 1084.8395 15/8
18 1148.6536
19 1211.4677
20 1276.2816 117/56
21 1340.0959 13/6
22 1403.91 exact 9/4