6ed7

From Xenharmonic Wiki
Jump to navigation Jump to search
← 5ed7 6ed7 7ed7 →
Prime factorization 2 × 3
Step size 561.471¢ 
Octave 2\6ed7 (1122.94¢) (→1\3ed7)
Twelfth 3\6ed7 (1684.41¢) (→1\2ed7)
Consistency limit 5
Distinct consistency limit 2
Special properties

6 equal divisions of the 7th harmonic (abbreviated 6ed7) is a nonoctave tuning system that divides the interval of 7/1 into 6 equal parts of about 561⁠ ⁠¢ each. Each step represents a frequency ratio of 71/6, or the 6th root of 7.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 561.5 7/5, 10/7, 11/8, 15/11, 19/14
2 1122.9 13/7, 15/8, 19/10, 21/11
3 1684.4 8/3, 13/5, 19/7, 21/8
4 2245.9 11/3, 15/4
5 2807.4 5/1
6 3368.8 7/1

Harmonics

Approximation of prime harmonics in 6ed7
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -77 -218 +21 +0 -221 +51 +148 -44 +186 -215 +231
Relative (%) -13.7 -38.7 +3.7 +0.0 -39.4 +9.1 +26.4 -7.9 +33.2 -38.3 +41.2
Steps
(reduced)
2
(2)
3
(3)
5
(5)
6
(0)
7
(1)
8
(2)
9
(3)
9
(3)
10
(4)
10
(4)
11
(5)
Approximation of prime harmonics in 6ed7
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -75 -253 +226 +72 -136 +240 +182 +20 -81 -129 -265
Relative (%) -13.4 -45.0 +40.3 +12.8 -24.2 +42.7 +32.5 +3.5 -14.4 -22.9 -47.3
Steps
(reduced)
11
(5)
11
(5)
12
(0)
12
(0)
12
(0)
13
(1)
13
(1)
13
(1)
13
(1)
13
(1)
13
(1)


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.