32ed7

From Xenharmonic Wiki
Jump to navigation Jump to search
← 31ed7 32ed7 33ed7 →
Prime factorization 25
Step size 105.276¢ 
Octave 11\32ed7 (1158.03¢)
Twelfth 18\32ed7 (1894.96¢) (→9\16ed7)
Consistency limit 3
Distinct consistency limit 3

Division of the 7th harmonic into 32 equal parts (32ed7) is related to 18edt, but with the 7/1 rather than the 3/1 being just. The step size is about 105.2758 cents, corresponding to 11.3986 edo.

Intervals

Intervals of 32ed7
degree cents value corresponding
JI intervals
comments
0 0.0000 exact 1/1
1 105.2758 17/16
2 210.5516
3 315.8274 6/5
4 421.1032 51/40
5 526.3790
6 631.6549 36/25
7 736.9307
8 842.2065
9 947.4823 140/81
10 1052.7581
11 1158.0339 125/64
12 1263.3097 56/27
13 1368.5855
14 1473.8613 225/96
15 1579.1371
16 1684.4130 119/45, 45/17
17 1789.6888 45/16
18 1894.9646
19 2000.2404
20 2105.5162 27/8
21 2210.7920
22 2316.0678
23 2421.3436 81/20
24 2526.6194
25 2631.8952 32/7
26 2737.1710 175/36
27 2842.4469
28 2947.7227 192/35
29 3052.9985 35/6
30 3158.2743
31 3263.5501
32 3368.8259 exact 7/1 harmonic seventh plus two octaves

Harmonics

Approximation of prime harmonics in 32ed7
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -42.0 -7.0 -49.1 +0.0 -45.6 -18.9 +43.0 -44.3 +46.1 -39.4 -49.6
Relative (%) -39.9 -6.6 -46.7 +0.0 -43.3 -18.0 +40.9 -42.1 +43.8 -37.4 -47.1
Steps
(reduced)
11
(11)
18
(18)
26
(26)
32
(0)
39
(7)
42
(10)
47
(15)
48
(16)
52
(20)
55
(23)
56
(24)
Approximation of prime harmonics in 32ed7
Harmonic 37 41 43 47 53 59 61 67 71 73 79
Error Absolute (¢) -40.1 -7.2 +15.6 -33.1 -30.6 -5.7 +41.9 -15.3 -10.4 +46.8 +15.3
Relative (%) -38.1 -6.9 +14.8 -31.5 -29.0 -5.4 +39.8 -14.5 -9.9 +44.4 +14.6
Steps
(reduced)
59
(27)
61
(29)
62
(30)
63
(31)
65
(1)
67
(3)
68
(4)
69
(5)
70
(6)
71
(7)
72
(8)


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.