96ed7
Jump to navigation
Jump to search
Prime factorization
25 × 3
Step size
35.0919¢
Octave
34\96ed7 (1193.13¢) (→17\48ed7)
Twelfth
54\96ed7 (1894.96¢) (→9\16ed7)
Consistency limit
6
Distinct consistency limit
6
← 95ed7 | 96ed7 | 97ed7 → |
Division of the 7th harmonic into 96 equal parts (96ed7) is related to the Carlos Gamma, but with the 7/1 rather than the 3/2 being just. The step size is about 35.0919 cents, corresponding to every fifth step of 171edo.
degree | cents value | corresponding JI intervals |
comments |
---|---|---|---|
0 | 0.0000 | exact 1/1 | |
1 | 35.0919 | 50/49, 49/48 | |
2 | 70.1839 | 25/24 | |
3 | 105.2758 | 17/16 | |
4 | 140.3677 | ||
5 | 175.4597 | ||
6 | 210.5516 | ||
7 | 245.6436 | 144/125 | |
8 | 280.7355 | 20/17 | |
9 | 315.8274 | 6/5 | |
10 | 350.9194 | ||
11 | 386.0113 | 5/4 | |
12 | 421.1032 | 51/40 | |
13 | 456.1952 | 125/96 | |
14 | 491.2871 | ||
15 | 526.3790 | ||
16 | 561.4710 | ||
17 | 596.5629 | 24/17 | |
18 | 631.6549 | 36/25 | |
19 | 666.7468 | 72/49 | |
20 | 701.8387 | 3/2 | |
21 | 736.9307 | ||
22 | 772.0226 | 25/16 | |
23 | 807.1145 | 51/32 | |
24 | 842.2065 | ||
25 | 877.2984 | ||
26 | 912.3903 | ||
27 | 947.4823 | 216/125, 140/81 | |
28 | 982.5742 | 30/17 | |
29 | 1017.6662 | 9/5 | |
30 | 1052.7581 | ||
31 | 1087.8500 | 15/4 | |
32 | 1122.9420 | ||
33 | 1158.0339 | 125/64 | |
34 | 1193.1258 | ||
35 | 1228.2178 | 128/63 | |
36 | 1263.3097 | 1296/625, 56/27 | |
37 | 1298.4017 | 36/17 | |
38 | 1333.4936 | 54/25 | |
39 | 1368.5855 | ||
40 | 1403.6775 | 9/4 | |
41 | 1438.7694 | ||
42 | 1473.8613 | 225/96 | |
43 | 1508.9533 | ||
44 | 1544.0452 | ||
45 | 1579.1371 | ||
46 | 1614.2291 | ||
47 | 1649.3210 | 70/27 | |
48 | 1684.4130 | 119/45, 45/17 | |
49 | 1719.5049 | 27/10 | |
50 | 1754.5968 | ||
51 | 1789.6888 | 45/16 | |
52 | 1824.7807 | ||
53 | 1859.8726 | ||
54 | 1894.9646 | ||
55 | 1930.0565 | 64/21 | |
56 | 1965.1484 | 28/9 | |
57 | 2000.2404 | ||
58 | 2035.3323 | ||
59 | 2070.4243 | ||
60 | 2105.5162 | 27/8 | |
61 | 2140.6081 | ||
62 | 2175.7001 | ||
63 | 2210.7920 | ||
64 | 2245.8839 | ||
65 | 2280.9759 | 28/15 | |
66 | 2316.0678 | ||
67 | 2351.1597 | 35/9 | |
68 | 2386.2517 | 119/30 | |
69 | 2421.3436 | 81/20 | |
70 | 2456.4356 | ||
71 | 2491.5275 | ||
72 | 2526.6194 | ||
73 | 2961.7114 | ||
74 | 2596.8033 | 112/25 | |
75 | 2631.8952 | 32/7 | |
76 | 2666.9872 | 14/3 | |
77 | 2702.0791 | ||
78 | 2737.1710 | 175/36 | |
79 | 2772.2630 | ||
80 | 2807.3549 | ||
81 | 2842.4469 | ||
82 | 2877.5388 | ||
83 | 2912.6307 | ||
84 | 2947.7227 | 192/35 | |
85 | 2982.8146 | 28/5 | |
86 | 3017.9065 | 40/7 | |
87 | 3052.9985 | 35/6 | |
88 | 3088.0904 | 119/20 | |
89 | 3123.1824 | ||
90 | 3158.2743 | ||
91 | 3193.3662 | ||
92 | 3228.4582 | ||
93 | 3263.5501 | ||
94 | 3298.6420 | 168/25 | |
95 | 3333.7340 | 48/7 | |
96 | 3368.8259 | exact 7/1 | harmonic seventh plus two octaves |