# Tetracot family

(Redirected from Wollemia)

The parent of the tetracot family is tetracot, the 5-limit temperament tempering out 20000/19683 = [5 -9 4, the minimal diesis or tetracot comma. The dual of this comma is the wedgie ⟨⟨4 9 5]], which tells us ~10/9 is a generator, and that four of them give ~3/2. In fact, (10/9)4 = 20000/19683 × 3/2. We also have (10/9)9 = (20000/19683)2 × 5/2. From this it is evident we should flatten the generator a bit, and 34edo does this and makes for a recommendable tuning. Another possibility is to use (5/2)1/9 for a generator. The 13-note mos gives enough space for eight triads, with the 20-note mos supplying many more.

The name comes from members of the Araucaria family of conifers, which have four cotyledons (though sometimes these are fused).

## Tetracot

Subgroup: 2.3.5

Comma list: 20000/19683

Mapping[1 1 1], 0 4 9]]

• CTE: ~2 = 1\1, ~10/9 = 176.028
• POTE:~2 = 1\1, ~10/9 = 176.160
eigenmonzo (unchanged-interval) basis: 2.5

### Overview to extensions

The second comma of the normal comma list defines which 7-limit family member we are looking at.

• 875/864, the keema, gives monkey;
• 179200/177147 (or equivalently 225/224) gives bunya;
• 245/243 gives octacot, which splits the generator in half.

#### Monkey and bunya

Monkey tempers out the keema. The keema, 875/864, is the amount by which three just minor thirds fall short of 7/4, and tells us the ~7/4 of monkey is reached by three minor thirds in succession. It can be described as the 34 & 41 temperament. 41edo is an excellent tuning for monkey, and has the effect of making monkey identical to bunya with the same tuning.

Bunya adds 225/224 to the list of commas and may be described as the 34d & 41 temperament. 41edo can again be used as a tuning, in which case it is the same as monkey. However an excellent alternative is 141/26 as a generator, giving just ~7's and an improved value for ~5, at the cost of a slightly sharper, but still less than a cent sharp, fifth. Octave stretching, if employed, also serves to distinguish bunya from monkey, as its octaves should be stretched considerably less.

Since the generator in all cases is between 10/9 and 11/10, it is natural to extend these temperaments to the 11-limit by tempering out (10/9)/(11/10) = 100/99. This gives 11-limit monkey, ⟨⟨4 9 -15 10 …]] and 11-limit bunya, ⟨⟨4 9 26 10 …]]. Again, 41edo can be used as a tuning, making the two identical, which is also the case if we turn to the 2.3.5.11 subgroup temperament, dispensing with 7. However, 11-limit bunya, like 7-limit bunya, profits a little from a slightly sharper fifth, such as the 141/26 generator supplies, or even sharper yet, as for instance by the val 355 563 823 997 1230], with a 52/355 generator.

Since 16/13 is shy of (10/9)2 by just 325/324, it is likewise natural to extend our winning streak with these temperaments by adding this to the list of commas. This gives us ⟨⟨4 9 -15 10 -2 …]] for 13-limit monkey and ⟨⟨4 9 26 10 -2 …]] for 13-limit bunya. Once again, 41edo is recommended as a tuning for monkey, while bunya can with advantage tune the fifth sharper: 17\116 as a generator with a fifth a cent and a half sharp or 11\75 with a fifth two cents sharp.

### 2.3.5.11 subgroup

As discussed above, tetracot works well for the 2.3.5.11.13 subgroup, in which it tempers out 100/99, 144/143 and 243/242.

The S-expression-based comma list of this temperament is {S9/S11, S10}.

Subgroup: 2.3.5.11

Comma list: 100/99, 243/242

Sval mapping: [1 1 1 2], 0 4 9 10]]

Optimal tunings:

• CTE: ~2 = 1\1, ~10/9 = 175.7765
• POTE ~2 = 1\1, ~10/9 = 175.985

Optimal ET sequence: 7, 20ce, 27e, 34, 41, 75e

#### 2.3.5.11.13 subgroup

Subgroup: 2.3.5.11.13

Comma list: 100/99, 144/143, 243/242

Sval mapping: [1 1 1 2 4], 0 4 9 10 -2]]

Optimal tunings:

• CTE: ~2 = 1\1, ~10/9 = 175.8150
• POTE ~2 = 1\1, ~10/9 = 176.196

Optimal ET sequence: 7, 20ce, 27e, 34, 41, 75e, 109ef

### 2.3.5.13 subgroup

Subgroup: 2.3.5.13

Comma list: 325/324, 512/507

Mapping[1 1 1 4], 0 4 9 -2]]

• CTE: ~2 = 1\1, ~10/9 = 176.0783
• CWE: ~2 = 1\1, ~10/9 = 176.2975

## Monkey

Subgroup: 2.3.5.7

Comma list: 875/864, 5120/5103

Mapping[1 1 1 5], 0 4 9 -15]]

Wedgie⟨⟨4 9 -15 5 -35 -60]]

Optimal tunings:

• CTE: ~2 = 1\1, ~10/9 = 175.676
• POTE:~2 = 1\1, ~10/9 = 175.659

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 100/99, 243/242, 385/384

Mapping: [1 1 1 5 2], 0 4 9 -15 10]]

Optimal tunings:

• CTE: ~2 = 1\1, ~10/9 = 175.598
• POTE ~2 = 1\1, ~10/9 = 175.570

Optimal ET sequence: 7, 34, 41

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 100/99, 105/104, 144/143, 243/242

Mapping: [1 1 1 5 2 4], 0 4 9 -15 10 -2]]

Optimal tunings:

• CTE: ~2 = 1\1, ~10/9 = 175.618
• POTE ~2 = 1\1, ~10/9 = 175.622

Optimal ET sequence: 7, 34, 41

### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 100/99, 105/104, 144/143, 154/153, 170/169

Mapping: [1 1 1 5 2 4 6], 0 4 9 -15 10 -2 -13]]

Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 175.754

Optimal ET sequence: 7, 34, 41

### 19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 100/99, 105/104, 144/143, 154/153, 170/169, 171/169

Mapping: [1 1 1 5 2 4 6 6], 0 4 9 -15 10 -2 -13 -12]]

Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 175.697

Optimal ET sequence: 7, 34, 41

## Bunya

Subgroup: 2.3.5.7

Comma list: 225/224, 15625/15309

Mapping[1 1 1 -1], 0 4 9 26]]

Wedgie⟨⟨4 9 26 5 30 35]]

Optimal tunings:

• CTE: ~2 = 1\1, ~10/9 = 175.785
• POTE:~2 = 1\1, ~10/9 = 175.741

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 100/99, 225/224, 243/242

Mapping: [1 1 1 -1 2], 0 4 9 26 10]]

Optimal tunings:

• CTE: ~2 = 1\1, ~10/9 = 175.738
• POTE ~2 = 1\1, ~10/9 = 175.777

Optimal ET sequence: 7d, …, 34d, 41, 116e

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 100/99, 144/143, 225/224, 243/242

Mapping: [1 1 1 -1 2 4], 0 4 9 26 10 -2]]

Optimal tunings:

• CTE: ~2 = 1\1, ~10/9 = 175.748
• POTE ~2 = 1\1, ~10/9 = 175.886

Optimal ET sequence: 7d, 34d, 41, 116ef

### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 100/99, 120/119, 144/143, 170/169, 225/224

Mapping: [1 1 1 -1 2 4 6], 0 4 9 26 10 -2 -13]]

Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 175.811

Optimal ET sequence: 34d, 41, 75e

### 19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 100/99, 120/119, 144/143, 170/169, 190/189, 225/224

Mapping: [1 1 1 -1 2 4 6 0], 0 4 9 26 10 -2 -13 29]]

Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 175.802

Optimal ET sequence: 34dh, 41, 75e

## Modus

Modus was named by Mike Battaglia in 2012 for its fantastic modmos structures[1].

Subgroup: 2.3.5.7

Comma list: 64/63, 4375/4374

Mapping[1 1 1 4], 0 4 9 -8]]

Optimal tunings:

• CTE: ~2 = 1\1, ~10/9 = 176.818
• POTE:~2 = 1\1, ~10/9 = 177.203

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 64/63, 100/99, 243/242

Mapping: [1 1 1 4 2], 0 4 9 -8 10]]

Optimal tunings:

• CTE: ~2 = 1\1, ~10/9 = 176.446
• POTE ~2 = 1\1, ~10/9 = 177.053

Optimal ET sequence: 7, 20ce, 27e, 34d

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 64/63, 78/77, 100/99, 144/143

Mapping: [1 1 1 4 2 4], 0 4 9 -8 10 -2]]

Optimal tunings:

• CTE: ~2 = 1\1, ~10/9 = 176.471
• POTE ~2 = 1\1, ~10/9 = 176.953

Optimal ET sequence: 7, 20ce, 27e, 34d

#### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 64/63, 78/77, 100/99, 120/119, 144/143

Mapping: [1 1 1 4 2 4 1], 0 4 9 -8 10 -2 21]]

Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 176.453

Optimal ET sequence: 7g, …, 27eg, 34d

#### 19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 64/63, 78/77, 96/95, 100/99, 120/119, 144/143

Mapping: [1 1 1 4 2 4 1 5], 0 4 9 -8 10 -2 21 -5]]

Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 176.538

Optimal ET sequence: 7g, …, 27eg, 34dh

Music

### Ponens

The error of 11 is about the same as that of modus, but flat instead of sharp, and much more abundant. Since the other primes are all sharp, however, this leads to a much larger error for other intervals involving 11.

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 363/350

Mapping: [1 1 1 4 3], 0 4 9 -8 3]]

Optimal tunings:

• CTE: ~2 = 1\1, ~10/9 = 176.990
• POTE ~2 = 1\1, ~10/9 = 177.200

Optimal ET sequence: 7, 20c, 27, 34de, 61dee

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 64/63, 66/65, 143/140

Mapping: [1 1 1 4 3 4], 0 4 9 -8 3 -2]]

Optimal tunings:

• CTE: ~2 = 1\1, ~10/9 = 177.017
• POTE ~2 = 1\1, ~10/9 = 177.197

Optimal ET sequence: 7, 20c, 27, 34de, 61dee

#### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 52/51, 55/54, 64/63, 66/65, 143/140

Mapping: [1 1 1 4 3 4 5], 0 4 9 -8 3 -2 -6]]

Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 177.378

Optimal ET sequence: 7, 20c, 27g

#### 19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 52/51, 55/54, 64/63, 66/65, 77/76, 143/140

Mapping: [1 1 1 4 3 4 5 5], 0 4 9 -8 3 -2 -6 -5]]

Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 177.505

Optimal ET sequence: 7, 20c, 27g

## Wollemia

Subgroup: 2.3.5.7

Comma list: 126/125, 2240/2187

Mapping[1 1 1 0], 0 4 9 19]]

Wedgie⟨⟨4 9 19 5 19 19]]

Optimal tunings:

• CTE: ~2 = 1\1, ~10/9 = 176.900
• POTE:~2 = 1\1, ~10/9 = 177.357

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 56/55, 100/99, 243/242

Mapping: [1 1 1 0 2], 0 4 9 19 10]]

Optimal tunings:

• CTE: ~2 = 1\1, ~10/9 = 176.704
• POTE ~2 = 1\1, ~10/9 = 177.413

Optimal ET sequence: 7d, 20cde, 27e, 34, 95dee

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 56/55, 91/90, 100/99, 243/242

Mapping: [1 1 1 0 2 4], 0 4 9 19 10 -2]]

Optimal tunings:

• CTE: ~2 = 1\1, ~10/9 = 176.716
• POTE ~2 = 1\1, ~10/9 = 177.231

Optimal ET sequence: 7d, 20cde, 27e, 34, 95dee

### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 56/55, 91/90, 100/99, 136/135, 154/153

Mapping: [1 1 1 0 2 4 1], 0 4 9 19 10 -2 21]]

Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 176.641

Optimal ET sequence: 27eg, 34

### 19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 56/55, 76/75, 91/90, 100/99, 136/135, 154/153

Mapping: [1 1 1 0 2 4 1 1], 0 4 9 19 10 -2 21 22]]

Optimal tuning (CTE): ~2 = 1\1, ~10/9 = 176.749

Optimal ET sequence: 27eg, 34, 95deegh

## Octacot

Octacot cuts the Gordian knot of deciding between the monkey and bunya mappings for 7 by cutting the generator in half and splitting the difference. It adds 245/243 to the normal comma list, and also tempers out 2401/2400. It may also be described as 41 & 68. 68edo or 109edo can be used as tunings, as can (5/2)1/18, which gives just major thirds. Another tuning is 150edo, which has a generator, 11\150, of exactly 88 cents. This relates octacot to the 88cET non-octave temperament, which like Carlos Alpha arguably makes more sense viewed as part of a rank-2 temperament with octaves rather than rank-1 without them.

Once again and for the same reasons, it is natural to add 100/99 and 325/324 to the list of commas, giving ⟨⟨8 18 11 20 -4 …]] as the octave part of the wedgie. Generators of 3\41, 8\109 and 11\150 (88 cents) are all good choices for the 7, 11 and 13 limits.

Subgroup: 2.3.5.7

Comma list: 245/243, 2401/2400

Mapping[1 1 1 2], 0 8 18 11]]

Wedgie⟨⟨8 18 11 10 -5 -25]]

Optimal tunings:

• CTE: ~2 = 1\1, ~21/20 = 88.023
• POTE:~2 = 1\1, ~21/20 = 88.076

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 100/99, 243/242, 245/242

Mapping: [1 1 1 2 2], 0 8 18 11 20]]

Optimal tunings:

• CTE: ~2 = 1\1, ~21/20 = 87.910
• POTE ~2 = 1\1, ~21/20 = 87.975

Optimal ET sequence: 14c, 27e, 41, 150ee, 191ee, 232cee

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 100/99, 144/143, 196/195, 243/242

Mapping: [1 1 1 2 2 4], 0 8 18 11 20 -4]]

Optimal tunings:

• CTE: ~2 = 1\1, ~21/20 = 87.926
• POTE ~2 = 1\1, ~21/20 = 88.106

Optimal ET sequence: 14c, 27e, 41, 150eef, 191eeff, 232ceeff

##### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 100/99, 120/119, 144/143, 154/153, 189/187

Mapping: [1 1 1 2 2 4 3], 0 8 18 11 20 -4 15]]

Optimal tunings:

• CTE: ~2 = 1\1, ~18/17 = 87.842
• POTE ~2 = 1\1, ~18/17 = 88.102

Optimal ET sequence: 14c, 27eg, 41

##### 19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 100/99, 120/119, 133/132, 144/143, 154/153, 189/187

Mapping: [1 1 1 2 2 4 3 3], 0 8 18 11 20 -4 15 17]]

Optimal tunings:

• CTE: ~2 = 1\1, ~18/17 = 87.866
• POTE ~2 = 1\1, ~18/17 = 88.111

Optimal ET sequence: 14c, 27eg, 41

#### Octocat

Subgroup: 2.3.5.7.11.13

Comma list: 78/77, 91/90, 100/99, 245/242

Mapping: [1 1 1 2 2 2], 0 8 18 11 20 23]]

Optimal tunings:

• CTE: ~2 = 1\1, ~21/20 = 88.090
• POTE ~2 = 1\1, ~21/20 = 88.179

Optimal ET sequence: 14cf, 27e, 41f, 68ef, 109eff

##### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 52/51, 78/77, 91/90, 100/99, 189/187

Mapping: [1 1 1 2 2 2 3], 0 8 18 11 20 23 15]]

Optimal tuning (CTE): ~2 = 1\1, ~18/17 = 88.011

Optimal ET sequence: 14cf, 27eg, 41f, 109effgg

##### 19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 52/51, 78/77, 91/90, 100/99, 133/132, 189/187

Mapping: [1 1 1 2 2 2 3 3], 0 8 18 11 20 23 15 17]]

Optimal tuning (CTE): ~2 = 1\1, ~18/17 = 88.017

Optimal ET sequence: 14cf, 27eg, 41f, 109effgg

#### Octopod

Subgroup: 2.3.5.7.11.13

Comma list: 100/99, 105/104, 243/242, 245/242

Mapping: [1 1 1 2 2 1], 0 8 18 11 20 37]]

Optimal tunings:

• CTE: ~2 = 1\1, ~21/20 = 87.770
• POTE ~2 = 1\1, ~21/20 = 87.697

Optimal ET sequence: 14cf, 27eff, 41

##### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 100/99, 105/104, 120/119, 154/153, 243/242

Mapping: [1 1 1 2 2 1 3], 0 8 18 11 20 37 15]]

Optimal tuning (CTE): ~2 = 1\1, ~18/17 = 87.728

Optimal ET sequence: 14cf, 27effg, 41

##### 19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 100/99, 105/104, 120/119, 133/132, 154/153, 209/208

Mapping: [1 1 1 2 2 1 3 3], 0 8 18 11 20 37 15 17]]

Optimal tuning (CTE): ~2 = 1\1, ~18/17 = 87.750

Optimal ET sequence: 14cf, 27effg, 41

#### Dificot

Subgroup: 2.3.5.7.11.13

Comma list: 100/99, 243/242, 245/242, 343/338

Mapping: [1 9 19 13 22 19], 0 -16 -36 -22 -40 -33]]

Optimal tunings:

• CTE: ~2 = 1\1, ~13/9 = 643.916
• POTE ~2 = 1\1, ~13/9 = 643.989

Optimal ET sequence: 13cdeef, 28ccdef, 41

### October

Subgroup: 2.3.5.7.11

Comma list: 245/243, 385/384, 1375/1372

Mapping: [1 1 1 2 5], 0 8 18 11 -21]]

Optimal tunings:

• CTE: ~2 = 1\1, ~21/20 = 88.026
• POTE ~2 = 1\1, ~21/20 = 88.035

Optimal ET sequence: 27, 41, 68, 109, 150, 259

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 196/195, 245/243, 275/273, 385/384

Mapping: [1 1 1 2 5 4], 0 8 18 11 -21 -4]]

Optimal tunings:

• CTE: ~2 = 1\1, ~21/20 = 88.041
• POTE ~2 = 1\1, ~21/20 = 88.075

Optimal ET sequence: 27, 41, 68, 109f

#### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 154/153, 170/169, 196/195, 245/243, 256/255

Mapping: [1 1 1 2 5 4 6], 0 8 18 11 -21 -4 -26]]

Optimal tunings:

• CTE: ~2 = 1\1, ~21/20 = 88.093
• POTE ~2 = 1\1, ~21/20 = 88.104

Optimal ET sequence: 27, 41, 68, 109f

#### 19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 154/153, 170/169, 190/189, 196/195, 209/208, 245/243

Mapping: [1 1 1 2 5 4 6 3], 0 8 18 11 -21 -4 -26 17]]

Optimal tunings:

• CTE: ~2 = 1\1, ~19/18 = 88.093
• POTE ~2 = 1\1, ~19/18 = 88.113

Optimal ET sequence: 27, 41, 68, 109f

### Devisemi (2.3.5.7.19)

#### 2.3.5.19 subgroup

Subgroup: 2.3.5.19

Comma list: 361/360, 20000/19683

Gencom: [2 19/18; 361/360 20000/19683]

Gencom mapping: [1 1 1 0 0 0 0 3], 0 8 18 0 0 0 0 17]]

Sval mapping: [1 1 1 3], 0 8 18 17]]

POL2 generator: ~19/18 = 88.077

RMS error: 0.5701 cents

#### 2.3.5.7.19 subgroup

Subgroup: 2.3.5.7.19

Comma list: 190/189, 245/243, 361/360

Gencom: [2 19/18; 190/189 245/243 361/360]

Gencom mapping: [1 1 1 2 0 0 0 3], 0 8 18 11 0 0 0 17]]

Sval mapping: [1 1 1 2 3], 0 8 18 11 17]]

POL2 generator: ~19/18 = 88.075

RMS error: 0.5780 cents

## Dodecacot

Subgroup: 2.3.5.7

Comma list: 3125/3087, 10976/10935

Mapping[1 1 1 1], 0 12 27 37]]

Wedgie⟨⟨12 27 37 15 25 10]]

Optimal tunings:

• CTE: ~2 = 1\1, ~28/27 = 58.648
• POTE:~2 = 1\1, ~28/27 = 58.675

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 100/99, 243/242, 1375/1372

Mapping: [1 1 1 1 2], 0 12 27 37 30]]

Optimal tunings:

• CTE: ~2 = 1\1, ~28/27 = 58.602
• POTE ~2 = 1\1, ~28/27 = 58.665

Optimal ET sequence: 20cde, 41

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 100/99, 196/195, 243/242, 275/273

Mapping: [1 1 1 1 2 2], 0 12 27 37 30 35]]

Optimal tunings:

• CTE: ~2 = 1\1, ~27/26 = 58.551
• POTE ~2 = 1\1, ~27/26 = 58.639

Optimal ET sequence: 20cdef, 21cdef, 41

## Byhearted

Subgroup: 2.3.5.7

Comma list: 50/49, 19683/19208

Mapping[2 2 2 3], 0 4 9 9]]

Mapping generators: ~7/5, ~10/9

Wedgie⟨⟨8 18 18 10 6 -9]]

Optimal tuning (CTE): ~7/5 = 1\2, ~10/9 = 175.472

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 99/98, 243/242

Mapping: [2 2 2 3 4], 0 4 9 9 10]]

Optimal tuning (CTE): ~7/5 = 1\2, ~10/9 = 175.401

Optimal ET sequence: 14c, 34d, 48, 82d, 130cdd

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 78/77, 99/98, 243/242

Mapping: [2 2 2 3 4 3], 0 4 9 9 10 15]]

Optimal tuning (CTE): ~7/5 = 1\2, ~10/9 = 175.586

Optimal ET sequence: 14cf, 34d, 48f, 82d

### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 50/49, 78/77, 85/84, 99/98, 243/242

Mapping: [2 2 2 3 4 3 7], 0 4 9 9 10 15 4]]

Optimal tuning (CTE): ~7/5 = 1\2, ~10/9 = 175.596

Optimal ET sequence: 14cf, 34d, 48f, 82d

### 19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 50/49, 78/77, 85/84, 99/98, 135/133, 243/242

Mapping: [2 2 2 3 4 3 7 5], 0 4 9 9 10 15 4 12]]

Optimal tuning (CTE): ~7/5 = 1\2, ~10/9 = 175.498

Optimal ET sequence: 14cf, 34dh, 48f, 82dh