225edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 224edo 225edo 226edo →
Prime factorization 32 × 52
Step size 5.33333¢ 
Fifth 132\225 (704¢) (→44\75)
Semitones (A1:m2) 24:15 (128¢ : 80¢)
Dual sharp fifth 132\225 (704¢) (→44\75)
Dual flat fifth 131\225 (698.667¢)
Dual major 2nd 38\225 (202.667¢)
Consistency limit 3
Distinct consistency limit 3

225 equal divisions of the octave (abbreviated 225edo or 225ed2), also called 225-tone equal temperament (225tet) or 225 equal temperament (225et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 225 equal parts of about 5.33 ¢ each. Each step represents a frequency ratio of 21/225, or the 225th root of 2.

Theory

225edo is inconsistent to the 5-odd-limit and higher limits, with rather large errors in harmonics 3, 5, 7, 11, and 13. It has three mappings possible for the 7-limit:

  • 225 357 522 632] (patent val),
  • 225 356 522 631] (225bd),
  • 225 357 523 632] (225c).

Using the patent val, it tempers out 20000/19683 and 2109375/2097152 in the 5-limit; 3125/3087, 10976/10935, and 589824/588245 in the 7-limit.

Using the 225bd val, it tempers out 78732/78125 (sensipent comma) and [-52 27 4 in the 5-limit; 225/224, 177147/175000, and 40353607/40000000 in the 7-limit.

Using the 225c val, it tempers out 131072000/129140163 (rodan comma) and 30958682112/30517578125 (trisedodge comma) in the 5-limit; 2401/2400, 4375/4374, and 2097152/2066715 in the 7-limit.

Odd harmonics

Approximation of odd harmonics in 225edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +2.04 -2.31 +1.84 -1.24 -1.98 +2.14 -0.27 +1.71 +1.15 -1.45 +1.06
Relative (%) +38.3 -43.4 +34.5 -23.3 -37.2 +40.1 -5.0 +32.1 +21.6 -27.1 +19.9
Steps
(reduced)
357
(132)
522
(72)
632
(182)
713
(38)
778
(103)
833
(158)
879
(204)
920
(20)
956
(56)
988
(88)
1018
(118)

Scales