Lumatone mapping for 54edo
Jump to navigation
Jump to search
54edo is an interesting case for Lumatone mappings, since (like 24edo), it is not generated by fifths and octaves, so the Standard Lumatone mapping for Pythagorean only reaches 27edo intervals. You can use the b val, but it is very flat, to the point where major seconds become 10/9 instead of 9/8.
42
50
49
3
11
19
27
48
2
10
18
26
34
42
50
1
9
17
25
33
41
49
3
11
19
27
0
8
16
24
32
40
48
2
10
18
26
34
42
50
7
15
23
31
39
47
1
9
17
25
33
41
49
3
11
19
27
6
14
22
30
38
46
0
8
16
24
32
40
48
2
10
18
26
34
42
50
13
21
29
37
45
53
7
15
23
31
39
47
1
9
17
25
33
41
49
3
11
19
27
12
20
28
36
44
52
6
14
22
30
38
46
0
8
16
24
32
40
48
2
10
18
26
34
42
50
27
35
43
51
5
13
21
29
37
45
53
7
15
23
31
39
47
1
9
17
25
33
41
49
3
11
19
27
50
4
12
20
28
36
44
52
6
14
22
30
38
46
0
8
16
24
32
40
48
2
10
18
26
34
27
35
43
51
5
13
21
29
37
45
53
7
15
23
31
39
47
1
9
17
25
33
41
50
4
12
20
28
36
44
52
6
14
22
30
38
46
0
8
16
24
32
40
27
35
43
51
5
13
21
29
37
45
53
7
15
23
31
39
47
50
4
12
20
28
36
44
52
6
14
22
30
38
46
27
35
43
51
5
13
21
29
37
45
53
50
4
12
20
28
36
44
52
27
35
43
51
5
50
4
Despite having a smaller range, the diaschismic mapping makes it much easier to play harmonics together.
27
32
34
39
44
49
0
36
41
46
51
2
7
12
17
43
48
53
4
9
14
19
24
29
34
39
45
50
1
6
11
16
21
26
31
36
41
46
51
2
52
3
8
13
18
23
28
33
38
43
48
53
4
9
14
19
24
0
5
10
15
20
25
30
35
40
45
50
1
6
11
16
21
26
31
36
41
7
12
17
22
27
32
37
42
47
52
3
8
13
18
23
28
33
38
43
48
53
4
9
9
14
19
24
29
34
39
44
49
0
5
10
15
20
25
30
35
40
45
50
1
6
11
16
21
26
21
26
31
36
41
46
51
2
7
12
17
22
27
32
37
42
47
52
3
8
13
18
23
28
33
38
43
48
38
43
48
53
4
9
14
19
24
29
34
39
44
49
0
5
10
15
20
25
30
35
40
45
50
1
6
11
16
21
26
31
36
41
46
51
2
7
12
17
22
27
32
37
42
47
52
3
8
23
28
33
38
43
48
53
4
9
14
19
24
29
34
39
44
49
0
5
10
45
50
1
6
11
16
21
26
31
36
41
46
51
2
7
12
17
8
13
18
23
28
33
38
43
48
53
4
9
14
19
30
35
40
45
50
1
6
11
16
21
26
47
52
3
8
13
18
23
28
15
20
25
30
35
32
37