Lumatone mapping for 51edo

From Xenharmonic Wiki
Jump to navigation Jump to search

There are many conceivable ways to map 51edo onto the Lumatone keyboard. Unfortunately, as it has multiple rings of 5ths, the Standard Lumatone mapping for Pythagorean is not one of them. You can use the b val, which can be interpreted as either mavila or undecimation, but is not a particularly great tuning for either.

Lumatone.svg
33
40
41
48
4
11
18
42
49
5
12
19
26
33
40
50
6
13
20
27
34
41
48
4
11
18
0
7
14
21
28
35
42
49
5
12
19
26
33
40
8
15
22
29
36
43
50
6
13
20
27
34
41
48
4
11
18
9
16
23
30
37
44
0
7
14
21
28
35
42
49
5
12
19
26
33
40
17
24
31
38
45
1
8
15
22
29
36
43
50
6
13
20
27
34
41
48
4
11
18
18
25
32
39
46
2
9
16
23
30
37
44
0
7
14
21
28
35
42
49
5
12
19
26
33
40
33
40
47
3
10
17
24
31
38
45
1
8
15
22
29
36
43
50
6
13
20
27
34
41
48
4
11
18
4
11
18
25
32
39
46
2
9
16
23
30
37
44
0
7
14
21
28
35
42
49
5
12
19
26
33
40
47
3
10
17
24
31
38
45
1
8
15
22
29
36
43
50
6
13
20
27
34
4
11
18
25
32
39
46
2
9
16
23
30
37
44
0
7
14
21
28
35
33
40
47
3
10
17
24
31
38
45
1
8
15
22
29
36
43
4
11
18
25
32
39
46
2
9
16
23
30
37
44
33
40
47
3
10
17
24
31
38
45
1
4
11
18
25
32
39
46
2
33
40
47
3
10
4
11

Instead, it is probably better to use one of the mappings that reaches the perfect 5th in three generator steps. Of these, the slendric mapping has the greater range.

Lumatone.svg
24
34
25
35
45
4
14
16
26
36
46
5
15
25
35
17
27
37
47
6
16
26
36
46
5
15
8
18
28
38
48
7
17
27
37
47
6
16
26
36
9
19
29
39
49
8
18
28
38
48
7
17
27
37
47
6
16
0
10
20
30
40
50
9
19
29
39
49
8
18
28
38
48
7
17
27
37
1
11
21
31
41
0
10
20
30
40
50
9
19
29
39
49
8
18
28
38
48
7
17
43
2
12
22
32
42
1
11
21
31
41
0
10
20
30
40
50
9
19
29
39
49
8
18
28
38
3
13
23
33
43
2
12
22
32
42
1
11
21
31
41
0
10
20
30
40
50
9
19
29
39
49
8
18
24
34
44
3
13
23
33
43
2
12
22
32
42
1
11
21
31
41
0
10
20
30
40
50
9
19
4
14
24
34
44
3
13
23
33
43
2
12
22
32
42
1
11
21
31
41
0
10
20
25
35
45
4
14
24
34
44
3
13
23
33
43
2
12
22
32
42
1
11
5
15
25
35
45
4
14
24
34
44
3
13
23
33
43
2
12
26
36
46
5
15
25
35
45
4
14
24
34
44
3
6
16
26
36
46
5
15
25
35
45
4
27
37
47
6
16
26
36
46
7
17
27
37
47
28
38

However, the porky mapping is probably more intuitive to people used to using a heptatonic scale and simple 5-limit ratios in chords.

Lumatone.svg
18
25
27
34
41
48
4
29
36
43
50
6
13
20
27
38
45
1
8
15
22
29
36
43
50
6
40
47
3
10
17
24
31
38
45
1
8
15
22
29
49
5
12
19
26
33
40
47
3
10
17
24
31
38
45
1
8
0
7
14
21
28
35
42
49
5
12
19
26
33
40
47
3
10
17
24
31
9
16
23
30
37
44
0
7
14
21
28
35
42
49
5
12
19
26
33
40
47
3
10
11
18
25
32
39
46
2
9
16
23
30
37
44
0
7
14
21
28
35
42
49
5
12
19
26
33
27
34
41
48
4
11
18
25
32
39
46
2
9
16
23
30
37
44
0
7
14
21
28
35
42
49
5
12
50
6
13
20
27
34
41
48
4
11
18
25
32
39
46
2
9
16
23
30
37
44
0
7
14
21
29
36
43
50
6
13
20
27
34
41
48
4
11
18
25
32
39
46
2
9
16
23
30
1
8
15
22
29
36
43
50
6
13
20
27
34
41
48
4
11
18
25
32
31
38
45
1
8
15
22
29
36
43
50
6
13
20
27
34
41
3
10
17
24
31
38
45
1
8
15
22
29
36
43
33
40
47
3
10
17
24
31
38
45
1
5
12
19
26
33
40
47
3
35
42
49
5
12
7
14
Lumatone mappings
48edo49edo50edoLumatone mapping for 51edo52edo53edo54edo