There are many conceivable ways to map 48edo onto the onto the Lumatone keyboard. However, since it has 4 mutually-exclusive rings of fifths, the Standard Lumatone mapping for Pythagorean is not one of them. Additionally, since it is highly composite, many other mappings will also fail to cover the whole gamut.
Tetracot
If you want an evenly distributed heptatonic scale that gives easy access to the perfect 5th, you instead need to use the Tetracot mapping, which is probably the most efficient and intuitive way of organising its intervals. Though, the 7L 6s MOS has a 6:1 step ratio, making it very lopsided.
33
40
39
46
5
12
19
38
45
4
11
18
25
32
39
44
3
10
17
24
31
38
45
4
11
18
43
2
9
16
23
30
37
44
3
10
17
24
31
38
1
8
15
22
29
36
43
2
9
16
23
30
37
44
3
10
17
0
7
14
21
28
35
42
1
8
15
22
29
36
43
2
9
16
23
30
37
6
13
20
27
34
41
0
7
14
21
28
35
42
1
8
15
22
29
36
43
2
9
16
5
12
19
26
33
40
47
6
13
20
27
34
41
0
7
14
21
28
35
42
1
8
15
22
29
36
18
25
32
39
46
5
12
19
26
33
40
47
6
13
20
27
34
41
0
7
14
21
28
35
42
1
8
15
38
45
4
11
18
25
32
39
46
5
12
19
26
33
40
47
6
13
20
27
34
41
0
7
14
21
17
24
31
38
45
4
11
18
25
32
39
46
5
12
19
26
33
40
47
6
13
20
27
37
44
3
10
17
24
31
38
45
4
11
18
25
32
39
46
5
12
19
26
16
23
30
37
44
3
10
17
24
31
38
45
4
11
18
25
32
36
43
2
9
16
23
30
37
44
3
10
17
24
31
15
22
29
36
43
2
9
16
23
30
37
35
42
1
8
15
22
29
36
14
21
28
35
42
34
41
Other mappings
There are three other mappings that reach the perfect fith in 4 generator steps that might also be useful. These are the Negri, Squares, and Buzzard mappings.
Negri
4
9
12
17
22
27
32
15
20
25
30
35
40
45
2
23
28
33
38
43
0
5
10
15
20
25
26
31
36
41
46
3
8
13
18
23
28
33
38
43
34
39
44
1
6
11
16
21
26
31
36
41
46
3
8
13
18
37
42
47
4
9
14
19
24
29
34
39
44
1
6
11
16
21
26
31
36
45
2
7
12
17
22
27
32
37
42
47
4
9
14
19
24
29
34
39
44
1
6
11
0
5
10
15
20
25
30
35
40
45
2
7
12
17
22
27
32
37
42
47
4
9
14
19
24
29
13
18
23
28
33
38
43
0
5
10
15
20
25
30
35
40
45
2
7
12
17
22
27
32
37
42
47
4
31
36
41
46
3
8
13
18
23
28
33
38
43
0
5
10
15
20
25
30
35
40
45
2
7
12
6
11
16
21
26
31
36
41
46
3
8
13
18
23
28
33
38
43
0
5
10
15
20
24
29
34
39
44
1
6
11
16
21
26
31
36
41
46
3
8
13
18
23
47
4
9
14
19
24
29
34
39
44
1
6
11
16
21
26
31
17
22
27
32
37
42
47
4
9
14
19
24
29
34
40
45
2
7
12
17
22
27
32
37
42
10
15
20
25
30
35
40
45
33
38
43
0
5
3
8
Squares
29
32
40
43
46
1
4
0
3
6
9
12
15
18
21
11
14
17
20
23
26
29
32
35
38
41
19
22
25
28
31
34
37
40
43
46
1
4
7
10
30
33
36
39
42
45
0
3
6
9
12
15
18
21
24
27
30
38
41
44
47
2
5
8
11
14
17
20
23
26
29
32
35
38
41
44
47
1
4
7
10
13
16
19
22
25
28
31
34
37
40
43
46
1
4
7
10
13
16
19
9
12
15
18
21
24
27
30
33
36
39
42
45
0
3
6
9
12
15
18
21
24
27
30
33
36
23
26
29
32
35
38
41
44
47
2
5
8
11
14
17
20
23
26
29
32
35
38
41
44
47
2
5
8
40
43
46
1
4
7
10
13
16
19
22
25
28
31
34
37
40
43
46
1
4
7
10
13
16
19
12
15
18
21
24
27
30
33
36
39
42
45
0
3
6
9
12
15
18
21
24
27
30
29
32
35
38
41
44
47
2
5
8
11
14
17
20
23
26
29
32
35
38
1
4
7
10
13
16
19
22
25
28
31
34
37
40
43
46
1
18
21
24
27
30
33
36
39
42
45
0
3
6
9
38
41
44
47
2
5
8
11
14
17
20
7
10
13
16
19
22
25
28
27
30
33
36
39
44
47
Buzzard
7
16
8
17
26
35
44
0
9
18
27
36
45
6
15
1
10
19
28
37
46
7
16
25
34
43
41
2
11
20
29
38
47
8
17
26
35
44
5
14
42
3
12
21
30
39
0
9
18
27
36
45
6
15
24
33
42
34
43
4
13
22
31
40
1
10
19
28
37
46
7
16
25
34
43
4
13
35
44
5
14
23
32
41
2
11
20
29
38
47
8
17
26
35
44
5
14
23
32
41
27
36
45
6
15
24
33
42
3
12
21
30
39
0
9
18
27
36
45
6
15
24
33
42
3
12
37
46
7
16
25
34
43
4
13
22
31
40
1
10
19
28
37
46
7
16
25
34
43
4
13
22
31
40
8
17
26
35
44
5
14
23
32
41
2
11
20
29
38
47
8
17
26
35
44
5
14
23
32
41
36
45
6
15
24
33
42
3
12
21
30
39
0
9
18
27
36
45
6
15
24
33
42
7
16
25
34
43
4
13
22
31
40
1
10
19
28
37
46
7
16
25
34
35
44
5
14
23
32
41
2
11
20
29
38
47
8
17
26
35
6
15
24
33
42
3
12
21
30
39
0
9
18
27
34
43
4
13
22
31
40
1
10
19
28
5
14
23
32
41
2
11
20
33
42
3
12
21
4
13