Lumatone mapping for 48edo

From Xenharmonic Wiki
Jump to navigation Jump to search

There are many conceivable ways to map 48edo onto the onto the Lumatone keyboard. However, it has 4 mutually-exclusive rings of fifths, so the Standard Lumatone mapping for Pythagorean is not one of them. Since it is highly composite, many other mappings will also fail to cover the whole gamut.

Tetracot

If you want an evenly distributed heptatonic scale that gives easy access to the perfect 5th, you instead need to use the Tetracot mapping, which is probably the most efficient and intuitive way of organising its intervals. Though, the 7L 6s MOS has a 6:1 step ratio, making it very lopsided.

Bryan Deister demonstrates this layout (albeit with range restricted to 1 MIDI channel) in 48edo layout (2025).

33
40
39
46
5
12
19
38
45
4
11
18
25
32
39
44
3
10
17
24
31
38
45
4
11
18
43
2
9
16
23
30
37
44
3
10
17
24
31
38
1
8
15
22
29
36
43
2
9
16
23
30
37
44
3
10
17
0
7
14
21
28
35
42
1
8
15
22
29
36
43
2
9
16
23
30
37
6
13
20
27
34
41
0
7
14
21
28
35
42
1
8
15
22
29
36
43
2
9
16
5
12
19
26
33
40
47
6
13
20
27
34
41
0
7
14
21
28
35
42
1
8
15
22
29
36
18
25
32
39
46
5
12
19
26
33
40
47
6
13
20
27
34
41
0
7
14
21
28
35
42
1
8
15
38
45
4
11
18
25
32
39
46
5
12
19
26
33
40
47
6
13
20
27
34
41
0
7
14
21
17
24
31
38
45
4
11
18
25
32
39
46
5
12
19
26
33
40
47
6
13
20
27
37
44
3
10
17
24
31
38
45
4
11
18
25
32
39
46
5
12
19
26
16
23
30
37
44
3
10
17
24
31
38
45
4
11
18
25
32
36
43
2
9
16
23
30
37
44
3
10
17
24
31
15
22
29
36
43
2
9
16
23
30
37
35
42
1
8
15
22
29
36
14
21
28
35
42
34
41

Doublewide

If you don't mind skipping the occasional step, the doublewide mapping expands your range and is particularly efficient at spanning the 11-limit.

5
16
7
18
29
40
3
46
9
20
31
42
5
16
27
0
11
22
33
44
7
18
29
40
3
14
39
2
13
24
35
46
9
20
31
42
5
16
27
38
41
4
15
26
37
0
11
22
33
44
7
18
29
40
3
14
25
32
43
6
17
28
39
2
13
24
35
46
9
20
31
42
5
16
27
38
1
34
45
8
19
30
41
4
15
26
37
0
11
22
33
44
7
18
29
40
3
14
25
36
25
36
47
10
21
32
43
6
17
28
39
2
13
24
35
46
9
20
31
42
5
16
27
38
1
12
38
1
12
23
34
45
8
19
30
41
4
15
26
37
0
11
22
33
44
7
18
29
40
3
14
25
36
47
14
25
36
47
10
21
32
43
6
17
28
39
2
13
24
35
46
9
20
31
42
5
16
27
38
1
1
12
23
34
45
8
19
30
41
4
15
26
37
0
11
22
33
44
7
18
29
40
3
25
36
47
10
21
32
43
6
17
28
39
2
13
24
35
46
9
20
31
42
12
23
34
45
8
19
30
41
4
15
26
37
0
11
22
33
44
36
47
10
21
32
43
6
17
28
39
2
13
24
35
23
34
45
8
19
30
41
4
15
26
37
47
10
21
32
43
6
17
28
34
45
8
19
30
10
21

Other mappings

There are three other mappings that reach the perfect fifth in 4 generator steps that might also be useful. These are the Negri, Squares, and Buzzard mappings.

Negri

4
9
12
17
22
27
32
15
20
25
30
35
40
45
2
23
28
33
38
43
0
5
10
15
20
25
26
31
36
41
46
3
8
13
18
23
28
33
38
43
34
39
44
1
6
11
16
21
26
31
36
41
46
3
8
13
18
37
42
47
4
9
14
19
24
29
34
39
44
1
6
11
16
21
26
31
36
45
2
7
12
17
22
27
32
37
42
47
4
9
14
19
24
29
34
39
44
1
6
11
0
5
10
15
20
25
30
35
40
45
2
7
12
17
22
27
32
37
42
47
4
9
14
19
24
29
13
18
23
28
33
38
43
0
5
10
15
20
25
30
35
40
45
2
7
12
17
22
27
32
37
42
47
4
31
36
41
46
3
8
13
18
23
28
33
38
43
0
5
10
15
20
25
30
35
40
45
2
7
12
6
11
16
21
26
31
36
41
46
3
8
13
18
23
28
33
38
43
0
5
10
15
20
24
29
34
39
44
1
6
11
16
21
26
31
36
41
46
3
8
13
18
23
47
4
9
14
19
24
29
34
39
44
1
6
11
16
21
26
31
17
22
27
32
37
42
47
4
9
14
19
24
29
34
40
45
2
7
12
17
22
27
32
37
42
10
15
20
25
30
35
40
45
33
38
43
0
5
3
8

Squares

29
32
40
43
46
1
4
0
3
6
9
12
15
18
21
11
14
17
20
23
26
29
32
35
38
41
19
22
25
28
31
34
37
40
43
46
1
4
7
10
30
33
36
39
42
45
0
3
6
9
12
15
18
21
24
27
30
38
41
44
47
2
5
8
11
14
17
20
23
26
29
32
35
38
41
44
47
1
4
7
10
13
16
19
22
25
28
31
34
37
40
43
46
1
4
7
10
13
16
19
9
12
15
18
21
24
27
30
33
36
39
42
45
0
3
6
9
12
15
18
21
24
27
30
33
36
23
26
29
32
35
38
41
44
47
2
5
8
11
14
17
20
23
26
29
32
35
38
41
44
47
2
5
8
40
43
46
1
4
7
10
13
16
19
22
25
28
31
34
37
40
43
46
1
4
7
10
13
16
19
12
15
18
21
24
27
30
33
36
39
42
45
0
3
6
9
12
15
18
21
24
27
30
29
32
35
38
41
44
47
2
5
8
11
14
17
20
23
26
29
32
35
38
1
4
7
10
13
16
19
22
25
28
31
34
37
40
43
46
1
18
21
24
27
30
33
36
39
42
45
0
3
6
9
38
41
44
47
2
5
8
11
14
17
20
7
10
13
16
19
22
25
28
27
30
33
36
39
44
47

Buzzard

7
16
8
17
26
35
44
0
9
18
27
36
45
6
15
1
10
19
28
37
46
7
16
25
34
43
41
2
11
20
29
38
47
8
17
26
35
44
5
14
42
3
12
21
30
39
0
9
18
27
36
45
6
15
24
33
42
34
43
4
13
22
31
40
1
10
19
28
37
46
7
16
25
34
43
4
13
35
44
5
14
23
32
41
2
11
20
29
38
47
8
17
26
35
44
5
14
23
32
41
27
36
45
6
15
24
33
42
3
12
21
30
39
0
9
18
27
36
45
6
15
24
33
42
3
12
37
46
7
16
25
34
43
4
13
22
31
40
1
10
19
28
37
46
7
16
25
34
43
4
13
22
31
40
8
17
26
35
44
5
14
23
32
41
2
11
20
29
38
47
8
17
26
35
44
5
14
23
32
41
36
45
6
15
24
33
42
3
12
21
30
39
0
9
18
27
36
45
6
15
24
33
42
7
16
25
34
43
4
13
22
31
40
1
10
19
28
37
46
7
16
25
34
35
44
5
14
23
32
41
2
11
20
29
38
47
8
17
26
35
6
15
24
33
42
3
12
21
30
39
0
9
18
27
34
43
4
13
22
31
40
1
10
19
28
5
14
23
32
41
2
11
20
33
42
3
12
21
4
13


ViewTalkEditLumatone mappings 
45edo46edo47edoLumatone mapping for 48edo49edo50edo51edo