Lumatone mapping for 48edo
Jump to navigation
Jump to search
There are many conceivable ways to map 48edo onto the Lumatone keyboard. Unfortunately, as it has multiple rings of 5ths, the Standard Lumatone mapping for Pythagorean is not one of them. Since it is highly composite, many other mappings will also fail to cover the entire gamut. If you want an evenly distributed heptatonic scale that gives easy access to the perfect 5th, you instead need to use the tetracot mapping, which is probably the most efficient and intuitive way of organising its intervals.
33
40
39
46
5
12
19
38
45
4
11
18
25
32
39
44
3
10
17
24
31
38
45
4
11
18
43
2
9
16
23
30
37
44
3
10
17
24
31
38
1
8
15
22
29
36
43
2
9
16
23
30
37
44
3
10
17
0
7
14
21
28
35
42
1
8
15
22
29
36
43
2
9
16
23
30
37
6
13
20
27
34
41
0
7
14
21
28
35
42
1
8
15
22
29
36
43
2
9
16
5
12
19
26
33
40
47
6
13
20
27
34
41
0
7
14
21
28
35
42
1
8
15
22
29
36
18
25
32
39
46
5
12
19
26
33
40
47
6
13
20
27
34
41
0
7
14
21
28
35
42
1
8
15
38
45
4
11
18
25
32
39
46
5
12
19
26
33
40
47
6
13
20
27
34
41
0
7
14
21
17
24
31
38
45
4
11
18
25
32
39
46
5
12
19
26
33
40
47
6
13
20
27
37
44
3
10
17
24
31
38
45
4
11
18
25
32
39
46
5
12
19
26
16
23
30
37
44
3
10
17
24
31
38
45
4
11
18
25
32
36
43
2
9
16
23
30
37
44
3
10
17
24
31
15
22
29
36
43
2
9
16
23
30
37
35
42
1
8
15
22
29
36
14
21
28
35
42
34
41
There are three other mappings that reach the perfect 5th in 4 generator steps that might also be useful. These are the Negri mapping
4
9
12
17
22
27
32
15
20
25
30
35
40
45
2
23
28
33
38
43
0
5
10
15
20
25
26
31
36
41
46
3
8
13
18
23
28
33
38
43
34
39
44
1
6
11
16
21
26
31
36
41
46
3
8
13
18
37
42
47
4
9
14
19
24
29
34
39
44
1
6
11
16
21
26
31
36
45
2
7
12
17
22
27
32
37
42
47
4
9
14
19
24
29
34
39
44
1
6
11
0
5
10
15
20
25
30
35
40
45
2
7
12
17
22
27
32
37
42
47
4
9
14
19
24
29
13
18
23
28
33
38
43
0
5
10
15
20
25
30
35
40
45
2
7
12
17
22
27
32
37
42
47
4
31
36
41
46
3
8
13
18
23
28
33
38
43
0
5
10
15
20
25
30
35
40
45
2
7
12
6
11
16
21
26
31
36
41
46
3
8
13
18
23
28
33
38
43
0
5
10
15
20
24
29
34
39
44
1
6
11
16
21
26
31
36
41
46
3
8
13
18
23
47
4
9
14
19
24
29
34
39
44
1
6
11
16
21
26
31
17
22
27
32
37
42
47
4
9
14
19
24
29
34
40
45
2
7
12
17
22
27
32
37
42
10
15
20
25
30
35
40
45
33
38
43
0
5
3
8
The Squares mapping
29
32
40
43
46
1
4
0
3
6
9
12
15
18
21
11
14
17
20
23
26
29
32
35
38
41
19
22
25
28
31
34
37
40
43
46
1
4
7
10
30
33
36
39
42
45
0
3
6
9
12
15
18
21
24
27
30
38
41
44
47
2
5
8
11
14
17
20
23
26
29
32
35
38
41
44
47
1
4
7
10
13
16
19
22
25
28
31
34
37
40
43
46
1
4
7
10
13
16
19
9
12
15
18
21
24
27
30
33
36
39
42
45
0
3
6
9
12
15
18
21
24
27
30
33
36
23
26
29
32
35
38
41
44
47
2
5
8
11
14
17
20
23
26
29
32
35
38
41
44
47
2
5
8
40
43
46
1
4
7
10
13
16
19
22
25
28
31
34
37
40
43
46
1
4
7
10
13
16
19
12
15
18
21
24
27
30
33
36
39
42
45
0
3
6
9
12
15
18
21
24
27
30
29
32
35
38
41
44
47
2
5
8
11
14
17
20
23
26
29
32
35
38
1
4
7
10
13
16
19
22
25
28
31
34
37
40
43
46
1
18
21
24
27
30
33
36
39
42
45
0
3
6
9
38
41
44
47
2
5
8
11
14
17
20
7
10
13
16
19
22
25
28
27
30
33
36
39
44
47
Or the Buzzard mapping.
7
16
8
17
26
35
44
0
9
18
27
36
45
6
15
1
10
19
28
37
46
7
16
25
34
43
41
2
11
20
29
38
47
8
17
26
35
44
5
14
42
3
12
21
30
39
0
9
18
27
36
45
6
15
24
33
42
34
43
4
13
22
31
40
1
10
19
28
37
46
7
16
25
34
43
4
13
35
44
5
14
23
32
41
2
11
20
29
38
47
8
17
26
35
44
5
14
23
32
41
27
36
45
6
15
24
33
42
3
12
21
30
39
0
9
18
27
36
45
6
15
24
33
42
3
12
37
46
7
16
25
34
43
4
13
22
31
40
1
10
19
28
37
46
7
16
25
34
43
4
13
22
31
40
8
17
26
35
44
5
14
23
32
41
2
11
20
29
38
47
8
17
26
35
44
5
14
23
32
41
36
45
6
15
24
33
42
3
12
21
30
39
0
9
18
27
36
45
6
15
24
33
42
7
16
25
34
43
4
13
22
31
40
1
10
19
28
37
46
7
16
25
34
35
44
5
14
23
32
41
2
11
20
29
38
47
8
17
26
35
6
15
24
33
42
3
12
21
30
39
0
9
18
27
34
43
4
13
22
31
40
1
10
19
28
5
14
23
32
41
2
11
20
33
42
3
12
21
4
13