Lumatone mapping for 47edo

From Xenharmonic Wiki
Jump to navigation Jump to search

There are many conceivable ways to map 47edo onto the onto the Lumatone keyboard. However, as both of its fifths are about as far away from just as possible, neither the sharp or the flat versions of the Standard Lumatone mapping for Pythagorean work particularly well. The flat one is slightly closer, making it the patent val.

Diatonic

Flat fifth

37
44
43
3
10
17
24
42
2
9
16
23
30
37
44
1
8
15
22
29
36
43
3
10
17
24
0
7
14
21
28
35
42
2
9
16
23
30
37
44
6
13
20
27
34
41
1
8
15
22
29
36
43
3
10
17
24
5
12
19
26
33
40
0
7
14
21
28
35
42
2
9
16
23
30
37
44
11
18
25
32
39
46
6
13
20
27
34
41
1
8
15
22
29
36
43
3
10
17
24
10
17
24
31
38
45
5
12
19
26
33
40
0
7
14
21
28
35
42
2
9
16
23
30
37
44
23
30
37
44
4
11
18
25
32
39
46
6
13
20
27
34
41
1
8
15
22
29
36
43
3
10
17
24
43
3
10
17
24
31
38
45
5
12
19
26
33
40
0
7
14
21
28
35
42
2
9
16
23
30
23
30
37
44
4
11
18
25
32
39
46
6
13
20
27
34
41
1
8
15
22
29
36
43
3
10
17
24
31
38
45
5
12
19
26
33
40
0
7
14
21
28
35
23
30
37
44
4
11
18
25
32
39
46
6
13
20
27
34
41
43
3
10
17
24
31
38
45
5
12
19
26
33
40
23
30
37
44
4
11
18
25
32
39
46
43
3
10
17
24
31
38
45
23
30
37
44
4
43
3

Sharp fifth

14
23
15
24
33
42
4
7
16
25
34
43
5
14
23
8
17
26
35
44
6
15
24
33
42
4
0
9
18
27
36
45
7
16
25
34
43
5
14
23
1
10
19
28
37
46
8
17
26
35
44
6
15
24
33
42
4
40
2
11
20
29
38
0
9
18
27
36
45
7
16
25
34
43
5
14
23
41
3
12
21
30
39
1
10
19
28
37
46
8
17
26
35
44
6
15
24
33
42
4
33
42
4
13
22
31
40
2
11
20
29
38
0
9
18
27
36
45
7
16
25
34
43
5
14
23
43
5
14
23
32
41
3
12
21
30
39
1
10
19
28
37
46
8
17
26
35
44
6
15
24
33
42
4
15
24
33
42
4
13
22
31
40
2
11
20
29
38
0
9
18
27
36
45
7
16
25
34
43
5
43
5
14
23
32
41
3
12
21
30
39
1
10
19
28
37
46
8
17
26
35
44
6
15
24
33
42
4
13
22
31
40
2
11
20
29
38
0
9
18
27
36
45
43
5
14
23
32
41
3
12
21
30
39
1
10
19
28
37
46
15
24
33
42
4
13
22
31
40
2
11
20
29
38
43
5
14
23
32
41
3
12
21
30
39
15
24
33
42
4
13
22
31
43
5
14
23
32
15
24

Baldy

Instead, it is probably better to treat it as a no-3's subgroup temperament, which the baldy mapping does quite effectively.

29
37
36
44
5
13
21
35
43
4
12
20
28
36
44
42
3
11
19
27
35
43
4
12
20
28
41
2
10
18
26
34
42
3
11
19
27
35
43
4
1
9
17
25
33
41
2
10
18
26
34
42
3
11
19
27
35
0
8
16
24
32
40
1
9
17
25
33
41
2
10
18
26
34
42
3
11
7
15
23
31
39
0
8
16
24
32
40
1
9
17
25
33
41
2
10
18
26
34
42
6
14
22
30
38
46
7
15
23
31
39
0
8
16
24
32
40
1
9
17
25
33
41
2
10
18
21
29
37
45
6
14
22
30
38
46
7
15
23
31
39
0
8
16
24
32
40
1
9
17
25
33
41
2
44
5
13
21
29
37
45
6
14
22
30
38
46
7
15
23
31
39
0
8
16
24
32
40
1
9
28
36
44
5
13
21
29
37
45
6
14
22
30
38
46
7
15
23
31
39
0
8
16
4
12
20
28
36
44
5
13
21
29
37
45
6
14
22
30
38
46
7
15
35
43
4
12
20
28
36
44
5
13
21
29
37
45
6
14
22
11
19
27
35
43
4
12
20
28
36
44
5
13
21
42
3
11
19
27
35
43
4
12
20
28
18
26
34
42
3
11
19
27
2
10
18
26
34
25
33


ViewTalkEditLumatone mappings 
44edo45edo46edoLumatone mapping for 47edo48edo49edo50edo