Lumatone mapping for 44edo

From Xenharmonic Wiki
Jump to navigation Jump to search

There are many conceivable ways to map 44edo onto the Lumatone keyboard. Unfortunately, as it has multiple rings of 5ths, the Standard Lumatone mapping for Pythagorean is not one of them. You can use the b val, which can be interpreted as either near equalised mavila, or more accurately but complexly as undecimation.

Lumatone.svg
28
34
35
41
3
9
15
36
42
4
10
16
22
28
34
43
5
11
17
23
29
35
41
3
9
15
0
6
12
18
24
30
36
42
4
10
16
22
28
34
7
13
19
25
31
37
43
5
11
17
23
29
35
41
3
9
15
8
14
20
26
32
38
0
6
12
18
24
30
36
42
4
10
16
22
28
34
15
21
27
33
39
1
7
13
19
25
31
37
43
5
11
17
23
29
35
41
3
9
15
16
22
28
34
40
2
8
14
20
26
32
38
0
6
12
18
24
30
36
42
4
10
16
22
28
34
29
35
41
3
9
15
21
27
33
39
1
7
13
19
25
31
37
43
5
11
17
23
29
35
41
3
9
15
4
10
16
22
28
34
40
2
8
14
20
26
32
38
0
6
12
18
24
30
36
42
4
10
16
22
29
35
41
3
9
15
21
27
33
39
1
7
13
19
25
31
37
43
5
11
17
23
29
4
10
16
22
28
34
40
2
8
14
20
26
32
38
0
6
12
18
24
30
29
35
41
3
9
15
21
27
33
39
1
7
13
19
25
31
37
4
10
16
22
28
34
40
2
8
14
20
26
32
38
29
35
41
3
9
15
21
27
33
39
1
4
10
16
22
28
34
40
2
29
35
41
3
9
4
10

Slicing the perfect 5th or 4th in half are also fairly good options, although the semiquartal one does not cover the whole gamut unless expanded from the 4L 1s mapping to the 5L 4s one.

Lumatone.svg
33
38
41
2
7
12
17
0
5
10
15
20
25
30
35
8
13
18
23
28
33
38
43
4
9
14
11
16
21
26
31
36
41
2
7
12
17
22
27
32
19
24
29
34
39
0
5
10
15
20
25
30
35
40
1
6
11
22
27
32
37
42
3
8
13
18
23
28
33
38
43
4
9
14
19
24
29
30
35
40
1
6
11
16
21
26
31
36
41
2
7
12
17
22
27
32
37
42
3
8
33
38
43
4
9
14
19
24
29
34
39
0
5
10
15
20
25
30
35
40
1
6
11
16
21
26
2
7
12
17
22
27
32
37
42
3
8
13
18
23
28
33
38
43
4
9
14
19
24
29
34
39
0
5
20
25
30
35
40
1
6
11
16
21
26
31
36
41
2
7
12
17
22
27
32
37
42
3
8
13
43
4
9
14
19
24
29
34
39
0
5
10
15
20
25
30
35
40
1
6
11
16
21
17
22
27
32
37
42
3
8
13
18
23
28
33
38
43
4
9
14
19
24
40
1
6
11
16
21
26
31
36
41
2
7
12
17
22
27
32
14
19
24
29
34
39
0
5
10
15
20
25
30
35
37
42
3
8
13
18
23
28
33
38
43
11
16
21
26
31
36
41
2
34
39
0
5
10
8
13
Lumatone.svg
23
32
31
40
5
14
23
30
39
4
13
22
31
40
5
38
3
12
21
30
39
4
13
22
31
40
37
2
11
20
29
38
3
12
21
30
39
4
13
22
1
10
19
28
37
2
11
20
29
38
3
12
21
30
39
4
13
0
9
18
27
36
1
10
19
28
37
2
11
20
29
38
3
12
21
30
39
8
17
26
35
0
9
18
27
36
1
10
19
28
37
2
11
20
29
38
3
12
21
30
7
16
25
34
43
8
17
26
35
0
9
18
27
36
1
10
19
28
37
2
11
20
29
38
3
12
24
33
42
7
16
25
34
43
8
17
26
35
0
9
18
27
36
1
10
19
28
37
2
11
20
29
38
3
6
15
24
33
42
7
16
25
34
43
8
17
26
35
0
9
18
27
36
1
10
19
28
37
2
11
41
6
15
24
33
42
7
16
25
34
43
8
17
26
35
0
9
18
27
36
1
10
19
23
32
41
6
15
24
33
42
7
16
25
34
43
8
17
26
35
0
9
18
14
23
32
41
6
15
24
33
42
7
16
25
34
43
8
17
26
40
5
14
23
32
41
6
15
24
33
42
7
16
25
31
40
5
14
23
32
41
6
15
24
33
13
22
31
40
5
14
23
32
4
13
22
31
40
30
39
Lumatone.svg
0
8
1
9
17
25
33
38
2
10
18
26
34
42
6
39
3
11
19
27
35
43
7
15
23
31
32
40
4
12
20
28
36
0
8
16
24
32
40
4
33
41
5
13
21
29
37
1
9
17
25
33
41
5
13
21
29
26
34
42
6
14
22
30
38
2
10
18
26
34
42
6
14
22
30
38
2
27
35
43
7
15
23
31
39
3
11
19
27
35
43
7
15
23
31
39
3
11
19
27
20
28
36
0
8
16
24
32
40
4
12
20
28
36
0
8
16
24
32
40
4
12
20
28
36
0
29
37
1
9
17
25
33
41
5
13
21
29
37
1
9
17
25
33
41
5
13
21
29
37
1
9
17
25
2
10
18
26
34
42
6
14
22
30
38
2
10
18
26
34
42
6
14
22
30
38
2
10
18
26
27
35
43
7
15
23
31
39
3
11
19
27
35
43
7
15
23
31
39
3
11
19
27
0
8
16
24
32
40
4
12
20
28
36
0
8
16
24
32
40
4
12
20
25
33
41
5
13
21
29
37
1
9
17
25
33
41
5
13
21
42
6
14
22
30
38
2
10
18
26
34
42
6
14
23
31
39
3
11
19
27
35
43
7
15
40
4
12
20
28
36
0
8
21
29
37
1
9
38
2

However, it is the Hemifourths mapping that combines the widest range that covers the full gamut with the most efficient way of reaching all prime harmonics up to 17.

Lumatone.svg
1
10
5
14
23
32
41
0
9
18
27
36
1
10
19
4
13
22
31
40
5
14
23
32
41
6
43
8
17
26
35
0
9
18
27
36
1
10
19
28
3
12
21
30
39
4
13
22
31
40
5
14
23
32
41
6
15
42
7
16
25
34
43
8
17
26
35
0
9
18
27
36
1
10
19
28
37
2
11
20
29
38
3
12
21
30
39
4
13
22
31
40
5
14
23
32
41
6
15
24
41
6
15
24
33
42
7
16
25
34
43
8
17
26
35
0
9
18
27
36
1
10
19
28
37
2
10
19
28
37
2
11
20
29
38
3
12
21
30
39
4
13
22
31
40
5
14
23
32
41
6
15
24
33
32
41
6
15
24
33
42
7
16
25
34
43
8
17
26
35
0
9
18
27
36
1
10
19
28
37
19
28
37
2
11
20
29
38
3
12
21
30
39
4
13
22
31
40
5
14
23
32
41
41
6
15
24
33
42
7
16
25
34
43
8
17
26
35
0
9
18
27
36
28
37
2
11
20
29
38
3
12
21
30
39
4
13
22
31
40
6
15
24
33
42
7
16
25
34
43
8
17
26
35
37
2
11
20
29
38
3
12
21
30
39
15
24
33
42
7
16
25
34
2
11
20
29
38
24
33