Lumatone mapping for 44edo

From Xenharmonic Wiki
Jump to navigation Jump to search

There are many conceivable ways to map 44edo onto the onto the Lumatone keyboard. However, it has 2 mutually-exclusive rings of fifths, so the Standard Lumatone mapping for Pythagorean is not one of them.

Antidiatonic

You can use the b val, which can be interpreted as either near equalised mavila, or more accurately but complexly as undecimation.

28
34
35
41
3
9
15
36
42
4
10
16
22
28
34
43
5
11
17
23
29
35
41
3
9
15
0
6
12
18
24
30
36
42
4
10
16
22
28
34
7
13
19
25
31
37
43
5
11
17
23
29
35
41
3
9
15
8
14
20
26
32
38
0
6
12
18
24
30
36
42
4
10
16
22
28
34
15
21
27
33
39
1
7
13
19
25
31
37
43
5
11
17
23
29
35
41
3
9
15
16
22
28
34
40
2
8
14
20
26
32
38
0
6
12
18
24
30
36
42
4
10
16
22
28
34
29
35
41
3
9
15
21
27
33
39
1
7
13
19
25
31
37
43
5
11
17
23
29
35
41
3
9
15
4
10
16
22
28
34
40
2
8
14
20
26
32
38
0
6
12
18
24
30
36
42
4
10
16
22
29
35
41
3
9
15
21
27
33
39
1
7
13
19
25
31
37
43
5
11
17
23
29
4
10
16
22
28
34
40
2
8
14
20
26
32
38
0
6
12
18
24
30
29
35
41
3
9
15
21
27
33
39
1
7
13
19
25
31
37
4
10
16
22
28
34
40
2
8
14
20
26
32
38
29
35
41
3
9
15
21
27
33
39
1
4
10
16
22
28
34
40
2
29
35
41
3
9
4
10

Neutral thirds

Another option is to slice the perfect fifth in half, giving this mapping, which is derived from the Lumatone mapping for neutral thirds scales:

33
38
41
2
7
12
17
0
5
10
15
20
25
30
35
8
13
18
23
28
33
38
43
4
9
14
11
16
21
26
31
36
41
2
7
12
17
22
27
32
19
24
29
34
39
0
5
10
15
20
25
30
35
40
1
6
11
22
27
32
37
42
3
8
13
18
23
28
33
38
43
4
9
14
19
24
29
30
35
40
1
6
11
16
21
26
31
36
41
2
7
12
17
22
27
32
37
42
3
8
33
38
43
4
9
14
19
24
29
34
39
0
5
10
15
20
25
30
35
40
1
6
11
16
21
26
2
7
12
17
22
27
32
37
42
3
8
13
18
23
28
33
38
43
4
9
14
19
24
29
34
39
0
5
20
25
30
35
40
1
6
11
16
21
26
31
36
41
2
7
12
17
22
27
32
37
42
3
8
13
43
4
9
14
19
24
29
34
39
0
5
10
15
20
25
30
35
40
1
6
11
16
21
17
22
27
32
37
42
3
8
13
18
23
28
33
38
43
4
9
14
19
24
40
1
6
11
16
21
26
31
36
41
2
7
12
17
22
27
32
14
19
24
29
34
39
0
5
10
15
20
25
30
35
37
42
3
8
13
18
23
28
33
38
43
11
16
21
26
31
36
41
2
34
39
0
5
10
8
13

Semiquartal

Slicing the perfect fourth in half also works, but the 4L 1s mapping does not cover the whole gamut:

23
32
31
40
5
14
23
30
39
4
13
22
31
40
5
38
3
12
21
30
39
4
13
22
31
40
37
2
11
20
29
38
3
12
21
30
39
4
13
22
1
10
19
28
37
2
11
20
29
38
3
12
21
30
39
4
13
0
9
18
27
36
1
10
19
28
37
2
11
20
29
38
3
12
21
30
39
8
17
26
35
0
9
18
27
36
1
10
19
28
37
2
11
20
29
38
3
12
21
30
7
16
25
34
43
8
17
26
35
0
9
18
27
36
1
10
19
28
37
2
11
20
29
38
3
12
24
33
42
7
16
25
34
43
8
17
26
35
0
9
18
27
36
1
10
19
28
37
2
11
20
29
38
3
6
15
24
33
42
7
16
25
34
43
8
17
26
35
0
9
18
27
36
1
10
19
28
37
2
11
41
6
15
24
33
42
7
16
25
34
43
8
17
26
35
0
9
18
27
36
1
10
19
23
32
41
6
15
24
33
42
7
16
25
34
43
8
17
26
35
0
9
18
14
23
32
41
6
15
24
33
42
7
16
25
34
43
8
17
26
40
5
14
23
32
41
6
15
24
33
42
7
16
25
31
40
5
14
23
32
41
6
15
24
33
13
22
31
40
5
14
23
32
4
13
22
31
40
30
39


Expanding this to the 5L 4s mapping solves this problem, but the scale has an 8:1 step ratio, making it very lopsided.

0
8
1
9
17
25
33
38
2
10
18
26
34
42
6
39
3
11
19
27
35
43
7
15
23
31
32
40
4
12
20
28
36
0
8
16
24
32
40
4
33
41
5
13
21
29
37
1
9
17
25
33
41
5
13
21
29
26
34
42
6
14
22
30
38
2
10
18
26
34
42
6
14
22
30
38
2
27
35
43
7
15
23
31
39
3
11
19
27
35
43
7
15
23
31
39
3
11
19
27
20
28
36
0
8
16
24
32
40
4
12
20
28
36
0
8
16
24
32
40
4
12
20
28
36
0
29
37
1
9
17
25
33
41
5
13
21
29
37
1
9
17
25
33
41
5
13
21
29
37
1
9
17
25
2
10
18
26
34
42
6
14
22
30
38
2
10
18
26
34
42
6
14
22
30
38
2
10
18
26
27
35
43
7
15
23
31
39
3
11
19
27
35
43
7
15
23
31
39
3
11
19
27
0
8
16
24
32
40
4
12
20
28
36
0
8
16
24
32
40
4
12
20
25
33
41
5
13
21
29
37
1
9
17
25
33
41
5
13
21
42
6
14
22
30
38
2
10
18
26
34
42
6
14
23
31
39
3
11
19
27
35
43
7
15
40
4
12
20
28
36
0
8
21
29
37
1
9
38
2

Hemifourths

However, it is the Hemifourths mapping that combines the widest range that covers the full gamut with the most efficient way of reaching all prime harmonics up to 17.

1
10
5
14
23
32
41
0
9
18
27
36
1
10
19
4
13
22
31
40
5
14
23
32
41
6
43
8
17
26
35
0
9
18
27
36
1
10
19
28
3
12
21
30
39
4
13
22
31
40
5
14
23
32
41
6
15
42
7
16
25
34
43
8
17
26
35
0
9
18
27
36
1
10
19
28
37
2
11
20
29
38
3
12
21
30
39
4
13
22
31
40
5
14
23
32
41
6
15
24
41
6
15
24
33
42
7
16
25
34
43
8
17
26
35
0
9
18
27
36
1
10
19
28
37
2
10
19
28
37
2
11
20
29
38
3
12
21
30
39
4
13
22
31
40
5
14
23
32
41
6
15
24
33
32
41
6
15
24
33
42
7
16
25
34
43
8
17
26
35
0
9
18
27
36
1
10
19
28
37
19
28
37
2
11
20
29
38
3
12
21
30
39
4
13
22
31
40
5
14
23
32
41
41
6
15
24
33
42
7
16
25
34
43
8
17
26
35
0
9
18
27
36
28
37
2
11
20
29
38
3
12
21
30
39
4
13
22
31
40
6
15
24
33
42
7
16
25
34
43
8
17
26
35
37
2
11
20
29
38
3
12
21
30
39
15
24
33
42
7
16
25
34
2
11
20
29
38
24
33


ViewTalkEditLumatone mappings 
41edo42edo43edoLumatone mapping for 44edo45edo46edo47edo