There are many conceivable ways to map 41edo onto the onto the Lumatone keyboard. Only one, however, agrees with the Standard Lumatone mapping for Pythagorean. Herman Miller has documented five 41edo layouts https://www.youtube.com/watch?v=ZeUdl-54CrI. Zip file of these layouts: https://en.xen.wiki/images/b/b9/41edo_lumatone_layouts.zip
Diatonic
2
9
5
12
19
26
33
1
8
15
22
29
36
2
9
4
11
18
25
32
39
5
12
19
26
33
0
7
14
21
28
35
1
8
15
22
29
36
2
9
3
10
17
24
31
38
4
11
18
25
32
39
5
12
19
26
33
40
6
13
20
27
34
0
7
14
21
28
35
1
8
15
22
29
36
2
9
2
9
16
23
30
37
3
10
17
24
31
38
4
11
18
25
32
39
5
12
19
26
33
39
5
12
19
26
33
40
6
13
20
27
34
0
7
14
21
28
35
1
8
15
22
29
36
2
9
8
15
22
29
36
2
9
16
23
30
37
3
10
17
24
31
38
4
11
18
25
32
39
5
12
19
26
33
25
32
39
5
12
19
26
33
40
6
13
20
27
34
0
7
14
21
28
35
1
8
15
22
29
36
8
15
22
29
36
2
9
16
23
30
37
3
10
17
24
31
38
4
11
18
25
32
39
25
32
39
5
12
19
26
33
40
6
13
20
27
34
0
7
14
21
28
35
8
15
22
29
36
2
9
16
23
30
37
3
10
17
24
31
38
25
32
39
5
12
19
26
33
40
6
13
20
27
34
8
15
22
29
36
2
9
16
23
30
37
25
32
39
5
12
19
26
33
8
15
22
29
36
25
32
Magic
The Magic mapping is particularly efficient at putting good intervals close to each other and dissonant ones far away, as demonstrated in more detail in the writings on the kite guitar.
21
23
32
34
36
38
40
0
2
4
6
8
10
12
14
11
13
15
17
19
21
23
25
27
29
31
20
22
24
26
28
30
32
34
36
38
40
1
3
5
31
33
35
37
39
0
2
4
6
8
10
12
14
16
18
20
22
40
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
1
3
5
7
9
11
13
19
21
23
25
27
29
31
33
35
37
39
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
32
34
36
38
40
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
1
3
5
7
9
11
13
15
23
25
27
29
31
33
35
37
39
0
2
4
6
8
10
12
14
16
18
20
22
24
26
38
40
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
14
16
18
20
22
24
26
28
30
32
34
36
38
40
1
3
5
29
31
33
35
37
39
0
2
4
6
8
10
12
14
5
7
9
11
13
15
17
19
21
23
25
20
22
24
26
28
30
32
34
37
39
0
2
4
11
13
Tetracot
The Tetracot mapping also puts consonant intervals within easy reach, but the 7L 6s MOS has a 5:1 step ratio, making it somewhat lopsided.
29
35
34
40
5
11
17
33
39
4
10
16
22
28
34
38
3
9
15
21
27
33
39
4
10
16
37
2
8
14
20
26
32
38
3
9
15
21
27
33
1
7
13
19
25
31
37
2
8
14
20
26
32
38
3
9
15
0
6
12
18
24
30
36
1
7
13
19
25
31
37
2
8
14
20
26
32
5
11
17
23
29
35
0
6
12
18
24
30
36
1
7
13
19
25
31
37
2
8
14
4
10
16
22
28
34
40
5
11
17
23
29
35
0
6
12
18
24
30
36
1
7
13
19
25
31
15
21
27
33
39
4
10
16
22
28
34
40
5
11
17
23
29
35
0
6
12
18
24
30
36
1
7
13
32
38
3
9
15
21
27
33
39
4
10
16
22
28
34
40
5
11
17
23
29
35
0
6
12
18
14
20
26
32
38
3
9
15
21
27
33
39
4
10
16
22
28
34
40
5
11
17
23
31
37
2
8
14
20
26
32
38
3
9
15
21
27
33
39
4
10
16
22
13
19
25
31
37
2
8
14
20
26
32
38
3
9
15
21
27
30
36
1
7
13
19
25
31
37
2
8
14
20
26
12
18
24
30
36
1
7
13
19
25
31
29
35
0
6
12
18
24
30
11
17
23
29
35
28
34
Rodan
If you want to maximise your range while having access to all notes in each octave, the compressed Rodan mapping is about as good as you can get.
17
25
24
32
40
7
15
23
31
39
6
14
22
30
38
30
38
5
13
21
29
37
4
12
20
28
29
37
4
12
20
28
36
3
11
19
27
35
2
10
36
3
11
19
27
35
2
10
18
26
34
1
9
17
25
33
0
35
2
10
18
26
34
1
9
17
25
33
0
8
16
24
32
40
7
15
23
1
9
17
25
33
0
8
16
24
32
40
7
15
23
31
39
6
14
22
30
38
5
13
0
8
16
24
32
40
7
15
23
31
39
6
14
22
30
38
5
13
21
29
37
4
12
20
28
36
15
23
31
39
6
14
22
30
38
5
13
21
29
37
4
12
20
28
36
3
11
19
27
35
2
10
18
26
38
5
13
21
29
37
4
12
20
28
36
3
11
19
27
35
2
10
18
26
34
1
9
17
25
33
28
36
3
11
19
27
35
2
10
18
26
34
1
9
17
25
33
0
8
16
24
32
40
10
18
26
34
1
9
17
25
33
0
8
16
24
32
40
7
15
23
31
39
0
8
16
24
32
40
7
15
23
31
39
6
14
22
30
38
5
23
31
39
6
14
22
30
38
5
13
21
29
37
4
13
21
29
37
4
12
20
28
36
3
11
36
3
11
19
27
35
2
10
26
34
1
9
17
8
16
However, this puts octaves all over the place. The expanded Rodan and Baldy mappings still have a wider range than the standard one and are more ergonomic for play.
18
26
19
27
35
2
10
12
20
28
36
3
11
19
27
13
21
29
37
4
12
20
28
36
3
11
6
14
22
30
38
5
13
21
29
37
4
12
20
28
7
15
23
31
39
6
14
22
30
38
5
13
21
29
37
4
12
0
8
16
24
32
40
7
15
23
31
39
6
14
22
30
38
5
13
21
29
1
9
17
25
33
0
8
16
24
32
40
7
15
23
31
39
6
14
22
30
38
5
13
35
2
10
18
26
34
1
9
17
25
33
0
8
16
24
32
40
7
15
23
31
39
6
14
22
30
3
11
19
27
35
2
10
18
26
34
1
9
17
25
33
0
8
16
24
32
40
7
15
23
31
39
6
14
20
28
36
3
11
19
27
35
2
10
18
26
34
1
9
17
25
33
0
8
16
24
32
40
7
15
4
12
20
28
36
3
11
19
27
35
2
10
18
26
34
1
9
17
25
33
0
8
16
21
29
37
4
12
20
28
36
3
11
19
27
35
2
10
18
26
34
1
9
5
13
21
29
37
4
12
20
28
36
3
11
19
27
35
2
10
22
30
38
5
13
21
29
37
4
12
20
28
36
3
6
14
22
30
38
5
13
21
29
37
4
23
31
39
6
14
22
30
38
7
15
23
31
39
24
32
Baldy
26
33
32
39
5
12
19
31
38
4
11
18
25
32
39
37
3
10
17
24
31
38
4
11
18
25
36
2
9
16
23
30
37
3
10
17
24
31
38
4
1
8
15
22
29
36
2
9
16
23
30
37
3
10
17
24
31
0
7
14
21
28
35
1
8
15
22
29
36
2
9
16
23
30
37
3
10
6
13
20
27
34
0
7
14
21
28
35
1
8
15
22
29
36
2
9
16
23
30
37
5
12
19
26
33
40
6
13
20
27
34
0
7
14
21
28
35
1
8
15
22
29
36
2
9
16
18
25
32
39
5
12
19
26
33
40
6
13
20
27
34
0
7
14
21
28
35
1
8
15
22
29
36
2
38
4
11
18
25
32
39
5
12
19
26
33
40
6
13
20
27
34
0
7
14
21
28
35
1
8
24
31
38
4
11
18
25
32
39
5
12
19
26
33
40
6
13
20
27
34
0
7
14
3
10
17
24
31
38
4
11
18
25
32
39
5
12
19
26
33
40
6
13
30
37
3
10
17
24
31
38
4
11
18
25
32
39
5
12
19
9
16
23
30
37
3
10
17
24
31
38
4
11
18
36
2
9
16
23
30
37
3
10
17
24
15
22
29
36
2
9
16
23
1
8
15
22
29
21
28
See also