Lumatone mapping for 41edo

From Xenharmonic Wiki
Jump to navigation Jump to search

There are many conceivable ways to map 41edo onto the onto the Lumatone keyboard. Only one, however, agrees with the Standard Lumatone mapping for Pythagorean. Herman Miller has documented five 41edo layouts https://www.youtube.com/watch?v=ZeUdl-54CrI. Zip file of these layouts: https://en.xen.wiki/images/b/b9/41edo_lumatone_layouts.zip

Diatonic

2
9
5
12
19
26
33
1
8
15
22
29
36
2
9
4
11
18
25
32
39
5
12
19
26
33
0
7
14
21
28
35
1
8
15
22
29
36
2
9
3
10
17
24
31
38
4
11
18
25
32
39
5
12
19
26
33
40
6
13
20
27
34
0
7
14
21
28
35
1
8
15
22
29
36
2
9
2
9
16
23
30
37
3
10
17
24
31
38
4
11
18
25
32
39
5
12
19
26
33
39
5
12
19
26
33
40
6
13
20
27
34
0
7
14
21
28
35
1
8
15
22
29
36
2
9
8
15
22
29
36
2
9
16
23
30
37
3
10
17
24
31
38
4
11
18
25
32
39
5
12
19
26
33
25
32
39
5
12
19
26
33
40
6
13
20
27
34
0
7
14
21
28
35
1
8
15
22
29
36
8
15
22
29
36
2
9
16
23
30
37
3
10
17
24
31
38
4
11
18
25
32
39
25
32
39
5
12
19
26
33
40
6
13
20
27
34
0
7
14
21
28
35
8
15
22
29
36
2
9
16
23
30
37
3
10
17
24
31
38
25
32
39
5
12
19
26
33
40
6
13
20
27
34
8
15
22
29
36
2
9
16
23
30
37
25
32
39
5
12
19
26
33
8
15
22
29
36
25
32

Magic

The Magic mapping is particularly efficient at putting good intervals close to each other and dissonant ones far away, as demonstrated in more detail in the writings on the kite guitar.

21
23
32
34
36
38
40
0
2
4
6
8
10
12
14
11
13
15
17
19
21
23
25
27
29
31
20
22
24
26
28
30
32
34
36
38
40
1
3
5
31
33
35
37
39
0
2
4
6
8
10
12
14
16
18
20
22
40
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
1
3
5
7
9
11
13
19
21
23
25
27
29
31
33
35
37
39
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
32
34
36
38
40
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
1
3
5
7
9
11
13
15
23
25
27
29
31
33
35
37
39
0
2
4
6
8
10
12
14
16
18
20
22
24
26
38
40
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
14
16
18
20
22
24
26
28
30
32
34
36
38
40
1
3
5
29
31
33
35
37
39
0
2
4
6
8
10
12
14
5
7
9
11
13
15
17
19
21
23
25
20
22
24
26
28
30
32
34
37
39
0
2
4
11
13

Tetracot

The Tetracot mapping also puts consonant intervals within easy reach, but the 7L 6s MOS has a 5:1 step ratio, making it somewhat lopsided.

29
35
34
40
5
11
17
33
39
4
10
16
22
28
34
38
3
9
15
21
27
33
39
4
10
16
37
2
8
14
20
26
32
38
3
9
15
21
27
33
1
7
13
19
25
31
37
2
8
14
20
26
32
38
3
9
15
0
6
12
18
24
30
36
1
7
13
19
25
31
37
2
8
14
20
26
32
5
11
17
23
29
35
0
6
12
18
24
30
36
1
7
13
19
25
31
37
2
8
14
4
10
16
22
28
34
40
5
11
17
23
29
35
0
6
12
18
24
30
36
1
7
13
19
25
31
15
21
27
33
39
4
10
16
22
28
34
40
5
11
17
23
29
35
0
6
12
18
24
30
36
1
7
13
32
38
3
9
15
21
27
33
39
4
10
16
22
28
34
40
5
11
17
23
29
35
0
6
12
18
14
20
26
32
38
3
9
15
21
27
33
39
4
10
16
22
28
34
40
5
11
17
23
31
37
2
8
14
20
26
32
38
3
9
15
21
27
33
39
4
10
16
22
13
19
25
31
37
2
8
14
20
26
32
38
3
9
15
21
27
30
36
1
7
13
19
25
31
37
2
8
14
20
26
12
18
24
30
36
1
7
13
19
25
31
29
35
0
6
12
18
24
30
11
17
23
29
35
28
34

Rodan

If you want to maximise your range while having access to all notes in each octave, the compressed Rodan mapping is about as good as you can get.

17
25
24
32
40
7
15
23
31
39
6
14
22
30
38
30
38
5
13
21
29
37
4
12
20
28
29
37
4
12
20
28
36
3
11
19
27
35
2
10
36
3
11
19
27
35
2
10
18
26
34
1
9
17
25
33
0
35
2
10
18
26
34
1
9
17
25
33
0
8
16
24
32
40
7
15
23
1
9
17
25
33
0
8
16
24
32
40
7
15
23
31
39
6
14
22
30
38
5
13
0
8
16
24
32
40
7
15
23
31
39
6
14
22
30
38
5
13
21
29
37
4
12
20
28
36
15
23
31
39
6
14
22
30
38
5
13
21
29
37
4
12
20
28
36
3
11
19
27
35
2
10
18
26
38
5
13
21
29
37
4
12
20
28
36
3
11
19
27
35
2
10
18
26
34
1
9
17
25
33
28
36
3
11
19
27
35
2
10
18
26
34
1
9
17
25
33
0
8
16
24
32
40
10
18
26
34
1
9
17
25
33
0
8
16
24
32
40
7
15
23
31
39
0
8
16
24
32
40
7
15
23
31
39
6
14
22
30
38
5
23
31
39
6
14
22
30
38
5
13
21
29
37
4
13
21
29
37
4
12
20
28
36
3
11
36
3
11
19
27
35
2
10
26
34
1
9
17
8
16


However, this puts octaves all over the place. The expanded Rodan and Baldy mappings still have a wider range than the standard one and are more ergonomic for play.

18
26
19
27
35
2
10
12
20
28
36
3
11
19
27
13
21
29
37
4
12
20
28
36
3
11
6
14
22
30
38
5
13
21
29
37
4
12
20
28
7
15
23
31
39
6
14
22
30
38
5
13
21
29
37
4
12
0
8
16
24
32
40
7
15
23
31
39
6
14
22
30
38
5
13
21
29
1
9
17
25
33
0
8
16
24
32
40
7
15
23
31
39
6
14
22
30
38
5
13
35
2
10
18
26
34
1
9
17
25
33
0
8
16
24
32
40
7
15
23
31
39
6
14
22
30
3
11
19
27
35
2
10
18
26
34
1
9
17
25
33
0
8
16
24
32
40
7
15
23
31
39
6
14
20
28
36
3
11
19
27
35
2
10
18
26
34
1
9
17
25
33
0
8
16
24
32
40
7
15
4
12
20
28
36
3
11
19
27
35
2
10
18
26
34
1
9
17
25
33
0
8
16
21
29
37
4
12
20
28
36
3
11
19
27
35
2
10
18
26
34
1
9
5
13
21
29
37
4
12
20
28
36
3
11
19
27
35
2
10
22
30
38
5
13
21
29
37
4
12
20
28
36
3
6
14
22
30
38
5
13
21
29
37
4
23
31
39
6
14
22
30
38
7
15
23
31
39
24
32

Baldy

26
33
32
39
5
12
19
31
38
4
11
18
25
32
39
37
3
10
17
24
31
38
4
11
18
25
36
2
9
16
23
30
37
3
10
17
24
31
38
4
1
8
15
22
29
36
2
9
16
23
30
37
3
10
17
24
31
0
7
14
21
28
35
1
8
15
22
29
36
2
9
16
23
30
37
3
10
6
13
20
27
34
0
7
14
21
28
35
1
8
15
22
29
36
2
9
16
23
30
37
5
12
19
26
33
40
6
13
20
27
34
0
7
14
21
28
35
1
8
15
22
29
36
2
9
16
18
25
32
39
5
12
19
26
33
40
6
13
20
27
34
0
7
14
21
28
35
1
8
15
22
29
36
2
38
4
11
18
25
32
39
5
12
19
26
33
40
6
13
20
27
34
0
7
14
21
28
35
1
8
24
31
38
4
11
18
25
32
39
5
12
19
26
33
40
6
13
20
27
34
0
7
14
3
10
17
24
31
38
4
11
18
25
32
39
5
12
19
26
33
40
6
13
30
37
3
10
17
24
31
38
4
11
18
25
32
39
5
12
19
9
16
23
30
37
3
10
17
24
31
38
4
11
18
36
2
9
16
23
30
37
3
10
17
24
15
22
29
36
2
9
16
23
1
8
15
22
29
21
28

See also


ViewTalkEditLumatone mappings 
38edo39edo40edoLumatone mapping for 41edo42edo43edo44edo