Lumatone mapping for 52edo
Jump to navigation
Jump to search
52edo is an interesting case for Lumatone mappings, since (like 24edo), it is not generated by fifths and octaves, so the Standard Lumatone mapping for Pythagorean only reaches 26edo intervals. You can use the b val, but it is very sharp, to the point where major seconds become 8/7 instead of 9/8.
16
26
17
27
37
47
5
8
18
28
38
48
6
16
26
9
19
29
39
49
7
17
27
37
47
5
0
10
20
30
40
50
8
18
28
38
48
6
16
26
1
11
21
31
41
51
9
19
29
39
49
7
17
27
37
47
5
44
2
12
22
32
42
0
10
20
30
40
50
8
18
28
38
48
6
16
26
45
3
13
23
33
43
1
11
21
31
41
51
9
19
29
39
49
7
17
27
37
47
5
36
46
4
14
24
34
44
2
12
22
32
42
0
10
20
30
40
50
8
18
28
38
48
6
16
26
47
5
15
25
35
45
3
13
23
33
43
1
11
21
31
41
51
9
19
29
39
49
7
17
27
37
47
5
16
26
36
46
4
14
24
34
44
2
12
22
32
42
0
10
20
30
40
50
8
18
28
38
48
6
47
5
15
25
35
45
3
13
23
33
43
1
11
21
31
41
51
9
19
29
39
49
7
16
26
36
46
4
14
24
34
44
2
12
22
32
42
0
10
20
30
40
50
47
5
15
25
35
45
3
13
23
33
43
1
11
21
31
41
51
16
26
36
46
4
14
24
34
44
2
12
22
32
42
47
5
15
25
35
45
3
13
23
33
43
16
26
36
46
4
14
24
34
47
5
15
25
35
16
26
The neutral thirds mapping is probably easier to navigate.
43
50
51
6
13
20
27
0
7
14
21
28
35
42
49
8
15
22
29
36
43
50
5
12
19
26
9
16
23
30
37
44
51
6
13
20
27
34
41
48
17
24
31
38
45
0
7
14
21
28
35
42
49
4
11
18
25
18
25
32
39
46
1
8
15
22
29
36
43
50
5
12
19
26
33
40
47
26
33
40
47
2
9
16
23
30
37
44
51
6
13
20
27
34
41
48
3
10
17
24
27
34
41
48
3
10
17
24
31
38
45
0
7
14
21
28
35
42
49
4
11
18
25
32
39
46
42
49
4
11
18
25
32
39
46
1
8
15
22
29
36
43
50
5
12
19
26
33
40
47
2
9
16
23
12
19
26
33
40
47
2
9
16
23
30
37
44
51
6
13
20
27
34
41
48
3
10
17
24
31
41
48
3
10
17
24
31
38
45
0
7
14
21
28
35
42
49
4
11
18
25
32
39
11
18
25
32
39
46
1
8
15
22
29
36
43
50
5
12
19
26
33
40
40
47
2
9
16
23
30
37
44
51
6
13
20
27
34
41
48
10
17
24
31
38
45
0
7
14
21
28
35
42
49
39
46
1
8
15
22
29
36
43
50
5
9
16
23
30
37
44
51
6
38
45
0
7
14
8
15