Lumatone mapping for 53edo

From Xenharmonic Wiki
Jump to navigation Jump to search

There are many conceivable ways to map 53edo onto the onto the Lumatone keyboard. Only one, however, agrees with the Standard Lumatone mapping for Pythagorean.

Diatonic

This is "Preset 9 — 53-ET Bosanquet" in version 1.0 of the official Lumatone manual, and "Preset 9 — 53-EDO Bosanquet" in version 1.21. Cam Taylor has created a tour of intervals for this layout, in A meander around 53-equal on the Lumatone (2025).

2
11
6
15
24
33
42
1
10
19
28
37
46
2
11
5
14
23
32
41
50
6
15
24
33
42
0
9
18
27
36
45
1
10
19
28
37
46
2
11
4
13
22
31
40
49
5
14
23
32
41
50
6
15
24
33
42
52
8
17
26
35
44
0
9
18
27
36
45
1
10
19
28
37
46
2
11
3
12
21
30
39
48
4
13
22
31
40
49
5
14
23
32
41
50
6
15
24
33
42
51
7
16
25
34
43
52
8
17
26
35
44
0
9
18
27
36
45
1
10
19
28
37
46
2
11
11
20
29
38
47
3
12
21
30
39
48
4
13
22
31
40
49
5
14
23
32
41
50
6
15
24
33
42
33
42
51
7
16
25
34
43
52
8
17
26
35
44
0
9
18
27
36
45
1
10
19
28
37
46
11
20
29
38
47
3
12
21
30
39
48
4
13
22
31
40
49
5
14
23
32
41
50
33
42
51
7
16
25
34
43
52
8
17
26
35
44
0
9
18
27
36
45
11
20
29
38
47
3
12
21
30
39
48
4
13
22
31
40
49
33
42
51
7
16
25
34
43
52
8
17
26
35
44
11
20
29
38
47
3
12
21
30
39
48
33
42
51
7
16
25
34
43
11
20
29
38
47
33
42

Hanson

Since 53edo is a schismatic tuning, the best approximation to 5/4 is the diminished fourth. The Hanson mapping makes playing familiar 5-limit chords easier, but the 4L 3s mapping does not quite span the full gamut.

5
16
8
19
30
41
52
0
11
22
33
44
2
13
24
3
14
25
36
47
5
16
27
38
49
7
48
6
17
28
39
50
8
19
30
41
52
10
21
32
51
9
20
31
42
0
11
22
33
44
2
13
24
35
46
4
15
43
1
12
23
34
45
3
14
25
36
47
5
16
27
38
49
7
18
29
40
46
4
15
26
37
48
6
17
28
39
50
8
19
30
41
52
10
21
32
43
1
12
23
38
49
7
18
29
40
51
9
20
31
42
0
11
22
33
44
2
13
24
35
46
4
15
26
37
48
52
10
21
32
43
1
12
23
34
45
3
14
25
36
47
5
16
27
38
49
7
18
29
40
51
9
20
31
24
35
46
4
15
26
37
48
6
17
28
39
50
8
19
30
41
52
10
21
32
43
1
12
23
34
7
18
29
40
51
9
20
31
42
0
11
22
33
44
2
13
24
35
46
4
15
26
37
32
43
1
12
23
34
45
3
14
25
36
47
5
16
27
38
49
7
18
29
15
26
37
48
6
17
28
39
50
8
19
30
41
52
10
21
32
40
51
9
20
31
42
0
11
22
33
44
2
13
24
23
34
45
3
14
25
36
47
5
16
27
48
6
17
28
39
50
8
19
31
42
0
11
22
3
14


The expanded 4L 7s mapping does cover the entire gamut, but puts octaves all over the place.

6
14
9
17
25
33
41
4
12
20
28
36
44
52
7
7
15
23
31
39
47
2
10
18
26
34
2
10
18
26
34
42
50
5
13
21
29
37
45
0
5
13
21
29
37
45
0
8
16
24
32
40
48
3
11
19
27
0
8
16
24
32
40
48
3
11
19
27
35
43
51
6
14
22
30
38
46
3
11
19
27
35
43
51
6
14
22
30
38
46
1
9
17
25
33
41
49
4
12
20
51
6
14
22
30
38
46
1
9
17
25
33
41
49
4
12
20
28
36
44
52
7
15
23
31
39
9
17
25
33
41
49
4
12
20
28
36
44
52
7
15
23
31
39
47
2
10
18
26
34
42
50
5
13
28
36
44
52
7
15
23
31
39
47
2
10
18
26
34
42
50
5
13
21
29
37
45
0
8
16
2
10
18
26
34
42
50
5
13
21
29
37
45
0
8
16
24
32
40
48
3
11
19
21
29
37
45
0
8
16
24
32
40
48
3
11
19
27
35
43
51
6
14
48
3
11
19
27
35
43
51
6
14
22
30
38
46
1
9
17
14
22
30
38
46
1
9
17
25
33
41
49
4
12
41
49
4
12
20
28
36
44
52
7
15
7
15
23
31
39
47
2
10
34
42
50
5
13
0
8

Buzzard

For easy access to single step movements and both the third and seventh harmonics, the buzzard mapping is quite effective.

8
18
9
19
29
39
49
0
10
20
30
40
50
7
17
1
11
21
31
41
51
8
18
28
38
48
45
2
12
22
32
42
52
9
19
29
39
49
6
16
46
3
13
23
33
43
0
10
20
30
40
50
7
17
27
37
47
37
47
4
14
24
34
44
1
11
21
31
41
51
8
18
28
38
48
5
15
38
48
5
15
25
35
45
2
12
22
32
42
52
9
19
29
39
49
6
16
26
36
46
29
39
49
6
16
26
36
46
3
13
23
33
43
0
10
20
30
40
50
7
17
27
37
47
4
14
40
50
7
17
27
37
47
4
14
24
34
44
1
11
21
31
41
51
8
18
28
38
48
5
15
25
35
45
8
18
28
38
48
5
15
25
35
45
2
12
22
32
42
52
9
19
29
39
49
6
16
26
36
46
39
49
6
16
26
36
46
3
13
23
33
43
0
10
20
30
40
50
7
17
27
37
47
7
17
27
37
47
4
14
24
34
44
1
11
21
31
41
51
8
18
28
38
38
48
5
15
25
35
45
2
12
22
32
42
52
9
19
29
39
6
16
26
36
46
3
13
23
33
43
0
10
20
30
37
47
4
14
24
34
44
1
11
21
31
5
15
25
35
45
2
12
22
36
46
3
13
23
4
14

Amity

The Lumatone mapping for amity mapping also puts 5-limit chords within very easy reach and provides a relatively even heptatonic scale.

47
2
1
9
17
25
33
0
8
16
24
32
40
48
3
7
15
23
31
39
47
2
10
18
26
34
6
14
22
30
38
46
1
9
17
25
33
41
49
4
13
21
29
37
45
0
8
16
24
32
40
48
3
11
19
27
35
12
20
28
36
44
52
7
15
23
31
39
47
2
10
18
26
34
42
50
5
19
27
35
43
51
6
14
22
30
38
46
1
9
17
25
33
41
49
4
12
20
28
36
18
26
34
42
50
5
13
21
29
37
45
0
8
16
24
32
40
48
3
11
19
27
35
43
51
6
33
41
49
4
12
20
28
36
44
52
7
15
23
31
39
47
2
10
18
26
34
42
50
5
13
21
29
37
3
11
19
27
35
43
51
6
14
22
30
38
46
1
9
17
25
33
41
49
4
12
20
28
36
44
34
42
50
5
13
21
29
37
45
0
8
16
24
32
40
48
3
11
19
27
35
43
51
4
12
20
28
36
44
52
7
15
23
31
39
47
2
10
18
26
34
42
50
35
43
51
6
14
22
30
38
46
1
9
17
25
33
41
49
4
5
13
21
29
37
45
0
8
16
24
32
40
48
3
36
44
52
7
15
23
31
39
47
2
10
6
14
22
30
38
46
1
9
37
45
0
8
16
7
15

Orwell

The basic Orwell mapping gives over six octaves of range, but the compressed 4L 1s mapping misses many notes along the way. To cover the full gamut, the mapping can be expanded to 4L 5s or 8L 1s, but the range is reduced to around four octaves, and the octaves are tilted.

Compressed

In addition to missing some notes, this mapping does not have the double duty features of the expanded mappings below. That said, the octaves only have a slight slope, so on a hypothetical XL-sized Lumatone having enough keys for all the notes, this would be a respectable mapping.

6
18
11
23
35
47
6
4
16
28
40
52
11
23
35
9
21
33
45
4
16
28
40
52
11
23
2
14
26
38
50
9
21
33
45
4
16
28
40
52
7
19
31
43
2
14
26
38
50
9
21
33
45
4
16
28
40
0
12
24
36
48
7
19
31
43
2
14
26
38
50
9
21
33
45
4
16
5
17
29
41
0
12
24
36
48
7
19
31
43
2
14
26
38
50
9
21
33
45
4
51
10
22
34
46
5
17
29
41
0
12
24
36
48
7
19
31
43
2
14
26
38
50
9
21
33
15
27
39
51
10
22
34
46
5
17
29
41
0
12
24
36
48
7
19
31
43
2
14
26
38
50
9
21
44
3
15
27
39
51
10
22
34
46
5
17
29
41
0
12
24
36
48
7
19
31
43
2
14
26
32
44
3
15
27
39
51
10
22
34
46
5
17
29
41
0
12
24
36
48
7
19
31
8
20
32
44
3
15
27
39
51
10
22
34
46
5
17
29
41
0
12
24
49
8
20
32
44
3
15
27
39
51
10
22
34
46
5
17
29
25
37
49
8
20
32
44
3
15
27
39
51
10
22
13
25
37
49
8
20
32
44
3
15
27
42
1
13
25
37
49
8
20
30
42
1
13
25
6
18

Expanded Orwell + Misneb

The range of this expanded mapping is slightly over four octaves, nominally more than that of the Doublethink mapping below, but the top and bottom octaves are both missing some notes due to being cut off in the upper left and lower right corners. That said, the generator is 5\53, or 16/15 ~ 15/14, which enables this mapping to do double duty for Misneb.

44
49
51
3
8
13
18
0
5
10
15
20
25
30
35
7
12
17
22
27
32
37
42
47
52
4
9
14
19
24
29
34
39
44
49
1
6
11
16
21
16
21
26
31
36
41
46
51
3
8
13
18
23
28
33
38
43
18
23
28
33
38
43
48
0
5
10
15
20
25
30
35
40
45
50
2
7
25
30
35
40
45
50
2
7
12
17
22
27
32
37
42
47
52
4
9
14
19
24
29
27
32
37
42
47
52
4
9
14
19
24
29
34
39
44
49
1
6
11
16
21
26
31
36
41
46
39
44
49
1
6
11
16
21
26
31
36
41
46
51
3
8
13
18
23
28
33
38
43
48
0
5
10
15
3
8
13
18
23
28
33
38
43
48
0
5
10
15
20
25
30
35
40
45
50
2
7
12
17
22
25
30
35
40
45
50
2
7
12
17
22
27
32
37
42
47
52
4
9
14
19
24
29
42
47
52
4
9
14
19
24
29
34
39
44
49
1
6
11
16
21
26
31
11
16
21
26
31
36
41
46
51
3
8
13
18
23
28
33
38
28
33
38
43
48
0
5
10
15
20
25
30
35
40
50
2
7
12
17
22
27
32
37
42
47
14
19
24
29
34
39
44
49
36
41
46
51
3
0
5

Doublethink

The 8L 1s mapping has generator 6\53 (13/12 ~ 14/13), and two of them make a fairly accurate ~7/6; six of them make the very accurate ~8/5; and fourteen of them make the extremely accurate ~3/1, making this an alternative Orwell mapping with the generator ~7/6 split in half, or in other words Doublethink. Bryan Deister has demonstrated this mapping in microtonal improvisation in 53edo (2025). The range is a bit over three and a half octaves (sloping upwards), but in the demonstration video it appears less due to use of only 1 MIDI channel, which cuts off notes at both the left and right margins. If enough MIDI channels are used to accommodate all keys on the Lumatone, no notes are missing until the better part of the way through the top partial (more than half) octave.

37
43
42
48
1
7
13
41
47
0
6
12
18
24
30
46
52
5
11
17
23
29
35
41
47
0
45
51
4
10
16
22
28
34
40
46
52
5
11
17
50
3
9
15
21
27
33
39
45
51
4
10
16
22
28
34
40
49
2
8
14
20
26
32
38
44
50
3
9
15
21
27
33
39
45
51
4
1
7
13
19
25
31
37
43
49
2
8
14
20
26
32
38
44
50
3
9
15
21
27
0
6
12
18
24
30
36
42
48
1
7
13
19
25
31
37
43
49
2
8
14
20
26
32
38
44
11
17
23
29
35
41
47
0
6
12
18
24
30
36
42
48
1
7
13
19
25
31
37
43
49
2
8
14
28
34
40
46
52
5
11
17
23
29
35
41
47
0
6
12
18
24
30
36
42
48
1
7
13
19
51
4
10
16
22
28
34
40
46
52
5
11
17
23
29
35
41
47
0
6
12
18
24
15
21
27
33
39
45
51
4
10
16
22
28
34
40
46
52
5
11
17
23
38
44
50
3
9
15
21
27
33
39
45
51
4
10
16
22
28
2
8
14
20
26
32
38
44
50
3
9
15
21
27
25
31
37
43
49
2
8
14
20
26
32
42
48
1
7
13
19
25
31
12
18
24
30
36
29
35

Semiquartal

Like the basic Orwell mapping, the basic compressed 4L 1s Barbados mapping also gives over six octaves of range but misses many notes along the way. To cover the full gamut, Barbados can be expanded to 5L 4s, but the range is reduced to just over four octaves and the octaves are tilted downwards. Each mapping does double duty for other temperaments.

Compressed Semiquartal + Hemischis/Hemigari

Although this mapping is missing some notes, the slope of the octaves is slight, and its generator of 11\53 (~15/13) enables it to do double duty as a Hemischis/Hemigari mapping, which could be useful on a hypothetical XL-sized Lumatone having enough keys for all the notes.

32
43
41
52
10
21
32
39
50
8
19
30
41
52
10
48
6
17
28
39
50
8
19
30
41
52
46
4
15
26
37
48
6
17
28
39
50
8
19
30
2
13
24
35
46
4
15
26
37
48
6
17
28
39
50
8
19
0
11
22
33
44
2
13
24
35
46
4
15
26
37
48
6
17
28
39
50
9
20
31
42
0
11
22
33
44
2
13
24
35
46
4
15
26
37
48
6
17
28
39
7
18
29
40
51
9
20
31
42
0
11
22
33
44
2
13
24
35
46
4
15
26
37
48
6
17
27
38
49
7
18
29
40
51
9
20
31
42
0
11
22
33
44
2
13
24
35
46
4
15
26
37
48
6
5
16
27
38
49
7
18
29
40
51
9
20
31
42
0
11
22
33
44
2
13
24
35
46
4
15
47
5
16
27
38
49
7
18
29
40
51
9
20
31
42
0
11
22
33
44
2
13
24
25
36
47
5
16
27
38
49
7
18
29
40
51
9
20
31
42
0
11
22
14
25
36
47
5
16
27
38
49
7
18
29
40
51
9
20
31
45
3
14
25
36
47
5
16
27
38
49
7
18
29
34
45
3
14
25
36
47
5
16
27
38
12
23
34
45
3
14
25
36
1
12
23
34
45
32
43

Expanded Semiquartal + Baldy

This expanded mapping has 9\53 as its generator, which is the extremely accurate ~9/8, enabling it to do double duty as a Baldy mapping.

5
14
7
16
25
34
43
0
9
18
27
36
45
1
10
2
11
20
29
38
47
3
12
21
30
39
48
4
13
22
31
40
49
5
14
23
32
41
50
6
50
6
15
24
33
42
51
7
16
25
34
43
52
8
17
26
35
43
52
8
17
26
35
44
0
9
18
27
36
45
1
10
19
28
37
46
2
45
1
10
19
28
37
46
2
11
20
29
38
47
3
12
21
30
39
48
4
13
22
31
38
47
3
12
21
30
39
48
4
13
22
31
40
49
5
14
23
32
41
50
6
15
24
33
42
51
49
5
14
23
32
41
50
6
15
24
33
42
51
7
16
25
34
43
52
8
17
26
35
44
0
9
18
27
16
25
34
43
52
8
17
26
35
44
0
9
18
27
36
45
1
10
19
28
37
46
2
11
20
29
45
1
10
19
28
37
46
2
11
20
29
38
47
3
12
21
30
39
48
4
13
22
31
12
21
30
39
48
4
13
22
31
40
49
5
14
23
32
41
50
6
15
24
41
50
6
15
24
33
42
51
7
16
25
34
43
52
8
17
26
8
17
26
35
44
0
9
18
27
36
45
1
10
19
37
46
2
11
20
29
38
47
3
12
21
4
13
22
31
40
49
5
14
33
42
51
7
16
0
9


ViewTalkEditLumatone mappings 
50edo51edo52edoLumatone mapping for 53edo54edo55edo56edo