User:BudjarnLambeth/Ed255/128

From Xenharmonic Wiki
(Redirected from Ed255/128)
Jump to navigation Jump to search
This user page is editable by any wiki editor.

As a general rule, most users expect their user space to be edited only by themselves, except for minor edits (e.g. maintenance), undoing obviously harmful edits such as vandalism or disruptive editing, and user talk pages.

However, by including this message box, the author of this user page has indicated that this page is open to contributions from other users (e.g. content-related edits).


An equal division of reduced harmonic 255 (ed255/128) is an equal-step tuning in which the octave-reduced 255th harmonic (255/128) is justly tuned and is divided in a given number of equal steps. 255/128 is very close to the octave, 2/1, but it is slightly flatter. This makes it suitable as an alternative to edos whose consonances are too sharp, such as 6edo.

Ed255/128s really only make sense for that purpose with 65 or fewer tones per pseudo-octave. With more tones than that, the relative error on 2/1 becomes unacceptably high and it makes more sense to switch to a different tuning like a zpi or ed511/256.

Ed255/128s are the complementary opposite of ed257/128s.

6ed255/128

Harmonics

Approximation of odd harmonics in 6ed255/128
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +86.8 -2.1 +12.0 -25.4 +25.0 -65.4 +84.6 +66.8 +73.1 +98.7 -58.8
Relative (%) +43.6 -1.1 +6.0 -12.8 +12.6 -32.9 +42.6 +33.6 +36.8 +49.6 -29.5
Steps
(reduced)
10
(4)
14
(2)
17
(5)
19
(1)
21
(3)
22
(4)
24
(0)
25
(1)
26
(2)
27
(3)
27
(3)


6edo for comparison:

Approximation of odd harmonics in 6edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +98.0 +13.7 +31.2 -3.9 +48.7 -40.5 -88.3 +95.0 -97.5 -70.8 -28.3
Relative (%) +49.0 +6.8 +15.6 -2.0 +24.3 -20.3 -44.1 +47.5 -48.8 -35.4 -14.1
Steps
(reduced)
10
(4)
14
(2)
17
(5)
19
(1)
21
(3)
22
(4)
23
(5)
25
(1)
25
(1)
26
(2)
27
(3)

Intervals

  • 198.871
  • 397.741
  • 596.612
  • 795.483
  • 994.353
  • 1193.224


11ed255/128

Harmonics

Approximation of odd harmonics in 11ed255/128
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +50.6 +34.0 -6.1 -7.3 -29.3 +6.9 -23.8 -23.6 +0.8 +44.5 -4.5
Relative (%) +46.6 +31.4 -5.6 -6.7 -27.0 +6.4 -22.0 -21.7 +0.7 +41.0 -4.2
Steps
(reduced)
18
(7)
26
(4)
31
(9)
35
(2)
38
(5)
41
(8)
43
(10)
45
(1)
47
(3)
49
(5)
50
(6)


11edo for comparison:

Approximation of odd harmonics in 11edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -47.4 +50.0 +13.0 +14.3 -5.9 +32.2 +2.6 +4.1 +29.8 -34.4 +26.3
Relative (%) -43.5 +45.9 +11.9 +13.1 -5.4 +29.5 +2.4 +3.8 +27.3 -31.5 +24.1
Steps
(reduced)
17
(6)
26
(4)
31
(9)
35
(2)
38
(5)
41
(8)
43
(10)
45
(1)
47
(3)
48
(4)
50
(6)

Intervals

  • 108.475
  • 216.95
  • 325.425
  • 433.9
  • 542.375
  • 650.85
  • 759.324
  • 867.799
  • 976.274
  • 1084.749
  • 1193.224


15ed255/128

15ed255/128 is very close to 47zpi. The 5- to 10-tone scales in 47zpi are also useable in 15ed255/128.

Harmonics

Approximation of prime harmonics in 15ed255/128
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -6.8 +7.2 -2.1 -27.8 -14.8 +14.2 +27.0 -6.4 -19.0 -22.6 +21.1
Relative (%) -8.5 +9.1 -2.7 -34.9 -18.6 +17.8 +34.0 -8.1 -23.9 -28.4 +26.5
Steps
(reduced)
15
(0)
24
(9)
35
(5)
42
(12)
52
(7)
56
(11)
62
(2)
64
(4)
68
(8)
73
(13)
75
(0)


15edo for comparison:

Approximation of prime harmonics in 15edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.0 +18.0 +13.7 -8.8 +8.7 +39.5 -25.0 +22.5 +11.7 +10.4 -25.0
Relative (%) +0.0 +22.6 +17.1 -11.0 +10.9 +49.3 -31.2 +28.1 +14.7 +13.0 -31.3
Steps
(reduced)
15
(0)
24
(9)
35
(5)
42
(12)
52
(7)
56
(11)
61
(1)
64
(4)
68
(8)
73
(13)
74
(14)

Intervals

  • 79.548
  • 159.097
  • 238.645
  • 318.193
  • 397.741
  • 477.29
  • 556.838
  • 636.386
  • 715.934
  • 795.483
  • 875.031
  • 954.579
  • 1034.128
  • 1113.676
  • 1193.224


17ed255/128

Harmonics

Approximation of prime harmonics in 17ed255/128
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -6.8 -6.8 +21.3 +0.3 -10.1 -18.6 +8.3 +26.3 -23.7 -3.8 +21.1
Relative (%) -9.7 -9.7 +30.3 +0.4 -14.4 -26.5 +11.9 +37.5 -33.7 -5.5 +30.0
Steps
(reduced)
17
(0)
27
(10)
40
(6)
48
(14)
59
(8)
63
(12)
70
(2)
73
(5)
77
(9)
83
(15)
85
(0)


17edo for comparison:

Approximation of prime harmonics in 17edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.0 +3.9 -33.4 +19.4 +13.4 +6.5 -34.4 -15.2 +7.0 +29.2 -15.6
Relative (%) +0.0 +5.6 -47.3 +27.5 +19.0 +9.3 -48.7 -21.5 +9.9 +41.4 -22.1
Steps
(reduced)
17
(0)
27
(10)
39
(5)
48
(14)
59
(8)
63
(12)
69
(1)
72
(4)
77
(9)
83
(15)
84
(16)

Intervals

  • 70.19
  • 140.379
  • 210.569
  • 280.759
  • 350.948
  • 421.138
  • 491.328
  • 561.517
  • 631.707
  • 701.897
  • 772.086
  • 842.276
  • 912.466
  • 982.655
  • 1052.845
  • 1123.034
  • 1193.224


18ed255/128

Harmonics

Approximation of odd harmonics in 18ed255/128
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +20.5 -2.1 +12.0 -25.4 +25.0 +0.9 +18.3 +0.5 +6.8 +32.4 +7.5
Relative (%) +30.9 -3.2 +18.1 -38.3 +37.7 +1.4 +27.7 +0.8 +10.3 +48.9 +11.4
Steps
(reduced)
29
(11)
42
(6)
51
(15)
57
(3)
63
(9)
67
(13)
71
(17)
74
(2)
77
(5)
80
(8)
82
(10)


18edo for comparison:

Approximation of odd harmonics in 18edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +31.4 +13.7 +31.2 -3.9 -18.0 +26.1 -21.6 +28.4 -30.8 -4.1 -28.3
Relative (%) +47.1 +20.5 +46.8 -5.9 -27.0 +39.2 -32.4 +42.6 -46.3 -6.2 -42.4
Steps
(reduced)
29
(11)
42
(6)
51
(15)
57
(3)
62
(8)
67
(13)
70
(16)
74
(2)
76
(4)
79
(7)
81
(9)

Intervals

  • 66.29
  • 132.58
  • 198.871
  • 265.161
  • 331.451
  • 397.741
  • 464.032
  • 530.322
  • 596.612
  • 662.902
  • 729.193
  • 795.483
  • 861.773
  • 928.063
  • 994.353
  • 1060.644
  • 1126.934
  • 1193.224


27ed255/128

Harmonics

Approximation of prime harmonics in 27ed255/128
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -6.8 -1.6 -2.1 -10.1 +2.9 -21.2 +0.5 -15.3 +7.5 +4.0 +21.1
Relative (%) -15.3 -3.7 -4.8 -22.9 +6.5 -47.9 +1.2 -34.5 +17.0 +9.0 +47.7
Steps
(reduced)
27
(0)
43
(16)
63
(9)
76
(22)
94
(13)
100
(19)
111
(3)
115
(7)
123
(15)
132
(24)
135
(0)


27edo for comparison:

Approximation of prime harmonics in 27edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.0 +9.2 +13.7 +9.0 -18.0 +3.9 -16.1 +13.6 -6.1 -7.4 +10.5
Relative (%) +0.0 +20.6 +30.8 +20.1 -40.5 +8.8 -36.1 +30.6 -13.6 -16.5 +23.7
Steps
(reduced)
27
(0)
43
(16)
63
(9)
76
(22)
93
(12)
100
(19)
110
(2)
115
(7)
122
(14)
131
(23)
134
(26)

Intervals

  • 44.193
  • 88.387
  • 132.58
  • 176.774
  • 220.967
  • 265.161
  • 309.354
  • 353.548
  • 397.741
  • 441.935
  • 486.128
  • 530.322
  • 574.515
  • 618.709
  • 662.902
  • 707.096
  • 751.289
  • 795.483
  • 839.676
  • 883.87
  • 928.063
  • 972.257
  • 1016.45
  • 1060.644
  • 1104.837
  • 1149.031
  • 1193.224


39ed255/128

Harmonics

Approximation of prime harmonics in 39ed255/128
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -6.8 -5.0 -2.1 -3.3 +9.7 -4.2 -9.7 +11.9 -12.9 +14.2 -9.5
Relative (%) -22.1 -16.5 -6.9 -10.9 +31.6 -13.7 -31.6 +39.0 -42.1 +46.3 -31.1
Steps
(reduced)
39
(0)
62
(23)
91
(13)
110
(32)
136
(19)
145
(28)
160
(4)
167
(11)
177
(21)
191
(35)
194
(38)


39edo for comparison:

Approximation of prime harmonics in 39edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.0 +5.7 +13.7 -15.0 +2.5 -9.8 -12.6 +10.2 -12.9 -14.2 -6.6
Relative (%) +0.0 +18.6 +44.5 -48.7 +8.2 -31.7 -41.1 +33.1 -41.9 -46.1 -21.4
Steps
(reduced)
39
(0)
62
(23)
91
(13)
109
(31)
135
(18)
144
(27)
159
(3)
166
(10)
176
(20)
189
(33)
193
(37)


42ed255/128

42ed255/128 is a kind of opposite twin to the scale 42ed257/128, as they improve 42edo’s JI approximation by about the same amount, but in opposite directions (those harmonics which are slightly sharp in one are slightly flat in the other).

42ed255/128’s step size is very close to that of APS715jot and 191zpi.

See Table of stretched 42edo tunings for more.

Harmonics

Approximation of prime harmonics in 42ed255/128
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -6.8 +1.5 -2.1 +12.0 -3.4 -8.6 +10.0 -12.1 -1.9 -5.5 -7.3
Relative (%) -23.9 +5.4 -7.5 +42.2 -12.1 -30.1 +35.2 -42.6 -6.8 -19.4 -25.8
Steps
(reduced)
42
(0)
67
(25)
98
(14)
119
(35)
146
(20)
156
(30)
173
(5)
179
(11)
191
(23)
205
(37)
209
(41)


42edo for comparison:

Approximation of prime harmonics in 42edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.0 +12.3 +13.7 +2.6 -8.5 -12.0 +9.3 -11.8 +0.3 -1.0 -2.2
Relative (%) +0.0 +43.2 +47.9 +9.1 -29.6 -41.8 +32.7 -41.3 +1.0 -3.5 -7.6
Steps
(reduced)
42
(0)
67
(25)
98
(14)
118
(34)
145
(19)
155
(29)
172
(4)
178
(10)
190
(22)
204
(36)
208
(40)

Scales


MOS scales
  • Eugene/Tritikleismic[9]: 3 8 3 3 8 3 3 8 3
  • Eugene/Tritikleismic[15]: 3 3 2 3 3 3 3 2 3 3 3 3 2 3 3
  • Lemba[16]: 3 2 3 2 3 3 2 3 3 2 3 2 3 3 2 3
  • Qeema/Skateboard[15]: 2 5 2 2 2 5 2 2 2 5 2 2 2 5 2
  • Qeema/Skateboard[19]: 2 2 3 2 2 2 2 3 2 2 2 3 2 2 2 2 3 2 2
  • Seville/Sevond[14] 1st mode: 1 5 1 5 1 5 1 5 1 5 1 5 1 5
  • Seville/Sevond[14] 2nd mode: 5 1 5 1 5 1 5 1 5 1 5 1 5 1
  • Seville/Sevond[21]: 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4


Subsets of MOS scales

(Names used are idiosyncratic.)

  • Eugene/Tritikleismic[9]
    • Groovy aeolian pentatonic: 11 6 8 3 14
    • Otonal mixolydian pentatonic: 14 3 8 11 6
    • Pseudo-equipentatonic: 11 6 8 6 11
    • Septimal melodic minor pentatonic: 8 3 14 14 3
    • Septimal Picardy pentatonic: 8 6 11 3 14
    • Undecimal lydian-aeolian pentatonic: 8 14 3 11 6
    • Yokai pentatonic: 3 14 8 3 14


49ed255/128

Harmonics

Approximation of prime harmonics in 49ed255/128
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -6.8 -2.5 -10.2 -8.3 -11.6 -8.6 -10.3 -8.0 +2.1 -9.6 -3.3
Relative (%) -27.8 -10.4 -42.1 -34.2 -47.5 -35.1 -42.3 -33.0 +8.7 -39.3 -13.4
Steps
(reduced)
49
(0)
78
(29)
114
(16)
138
(40)
170
(23)
182
(35)
201
(5)
209
(13)
223
(27)
239
(43)
244
(48)


49edo for comparison:

Approximation of prime harmonics in 49edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.0 +8.2 +5.5 +10.8 +11.9 -7.9 -7.0 -3.6 +8.5 -1.0 +6.0
Relative (%) +0.0 +33.7 +22.6 +44.0 +48.8 -32.2 -28.6 -14.8 +34.5 -4.1 +24.4
Steps
(reduced)
49
(0)
78
(29)
114
(16)
138
(40)
170
(23)
181
(34)
200
(4)
208
(12)
222
(26)
238
(42)
243
(47)


54ed255/128

Harmonics

Approximation of prime harmonics in 54ed255/128
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) -6.78 -1.64 -2.12 -10.12 +2.87 +0.92 +0.52 +6.83 +7.52 +3.96 -1.01
Relative (%) -30.7 -7.4 -9.6 -45.8 +13.0 +4.2 +2.4 +30.9 +34.1 +17.9 -4.6
Steps
(reduced)
54
(0)
86
(32)
126
(18)
152
(44)
188
(26)
201
(39)
222
(6)
231
(15)
246
(30)
264
(48)
269
(53)


54edo for comparison:

Approximation of prime harmonics in 54edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +9.16 -8.54 +8.95 +4.24 +3.92 +6.16 -8.62 -6.05 -7.35 +10.52
Relative (%) +0.0 +41.2 -38.4 +40.3 +19.1 +17.6 +27.7 -38.8 -27.2 -33.1 +47.3
Steps
(reduced)
54
(0)
86
(32)
125
(17)
152
(44)
187
(25)
200
(38)
221
(5)
229
(13)
244
(28)
262
(46)
268
(52)


Related concepts