22L 1s
← 21L 1s | 22L 1s | 23L 1s → |
↙ 21L 2s | ↓ 22L 2s | 23L 2s ↘ |
┌╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥┬┐ │║║║║║║║║║║║║║║║║║║║║║║││ │││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLLLLLLLLLLLLLLLLLLLLLL
22L 1s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 22 large steps and 1 small step, repeating every octave. 22L 1s is related to 1L 9s, expanding it by 13 tones. Generators that produce this scale range from 52.2 ¢ to 54.5 ¢, or from 1145.5 ¢ to 1147.8 ¢. Scales of this form are always proper because there is only one small step. This scale is produced by stacking the interval of 33/32 (around 53 ¢).
The name quartismoid is proposed for this pattern since its harmonic entropy minimum corresponds to tempering out the quartisma—five 33/32s being equated with 7/6. In addition, both 22edo and 23edo, extreme ranges of the MOS temper out the quartisma, as well as a large portion of EDOs up to 100-200 which have this scale.
Tuning ranges
Mavila fifth and 91edo (Ultrasoft and supersoft)
Between 4\91 and 1\23, 13 steps amount to a pelog / mavila fifth, which corresponds to the ultrasoft step ratio range. In 91edo, the fifth produced by 13 steps of the quartismoid scale is the same as 4 steps of 7edo, and thus is the exact boundary between mavila and diatonic.
Diatonic fifth (hard of supersoft)
From 1\22 to 4\91, 13 steps amount to a diatonic fifth.
If the pure 33/32 is used as a generator, the resulting fifth is 692.54826 ¢, which puts it in the category around flattone.
700-cent, just, and superpyth fifths (step ratio 7:2 and harder)
In 156edo, the fifth becomes the 12edo 700 ¢ fifth. In 200edo, the fifth comes incredibly close to just, as the number 200 is a semiconvergent denominator to the approximation of log2(3/2).
When the step ratio is greater than 4.472, then 13 generators amount to a superpyth fifth and the tuning approaches 22edo.
Relation to other equal divisions
6 steps act as a pseudo-6/5, and when they actually act as 6/5 along with 5 steps being equal to 7/6, 385/384 is tempered out. If one were to instead tune in favour of 6/5 instead of 7/6, the resulting hardness would be around 1.233. 114edo and 137edo represent this the best.
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0 ¢ |
1-mosstep | Diminished 1-mosstep | d1ms | s | 0.0 ¢ to 52.2 ¢ |
Perfect 1-mosstep | P1ms | L | 52.2 ¢ to 54.5 ¢ | |
2-mosstep | Minor 2-mosstep | m2ms | L + s | 54.5 ¢ to 104.3 ¢ |
Major 2-mosstep | M2ms | 2L | 104.3 ¢ to 109.1 ¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 2L + s | 109.1 ¢ to 156.5 ¢ |
Major 3-mosstep | M3ms | 3L | 156.5 ¢ to 163.6 ¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 3L + s | 163.6 ¢ to 208.7 ¢ |
Major 4-mosstep | M4ms | 4L | 208.7 ¢ to 218.2 ¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 4L + s | 218.2 ¢ to 260.9 ¢ |
Major 5-mosstep | M5ms | 5L | 260.9 ¢ to 272.7 ¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 5L + s | 272.7 ¢ to 313.0 ¢ |
Major 6-mosstep | M6ms | 6L | 313.0 ¢ to 327.3 ¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 6L + s | 327.3 ¢ to 365.2 ¢ |
Major 7-mosstep | M7ms | 7L | 365.2 ¢ to 381.8 ¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 7L + s | 381.8 ¢ to 417.4 ¢ |
Major 8-mosstep | M8ms | 8L | 417.4 ¢ to 436.4 ¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 8L + s | 436.4 ¢ to 469.6 ¢ |
Major 9-mosstep | M9ms | 9L | 469.6 ¢ to 490.9 ¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 9L + s | 490.9 ¢ to 521.7 ¢ |
Major 10-mosstep | M10ms | 10L | 521.7 ¢ to 545.5 ¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 10L + s | 545.5 ¢ to 573.9 ¢ |
Major 11-mosstep | M11ms | 11L | 573.9 ¢ to 600.0 ¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 11L + s | 600.0 ¢ to 626.1 ¢ |
Major 12-mosstep | M12ms | 12L | 626.1 ¢ to 654.5 ¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 12L + s | 654.5 ¢ to 678.3 ¢ |
Major 13-mosstep | M13ms | 13L | 678.3 ¢ to 709.1 ¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 13L + s | 709.1 ¢ to 730.4 ¢ |
Major 14-mosstep | M14ms | 14L | 730.4 ¢ to 763.6 ¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 14L + s | 763.6 ¢ to 782.6 ¢ |
Major 15-mosstep | M15ms | 15L | 782.6 ¢ to 818.2 ¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 15L + s | 818.2 ¢ to 834.8 ¢ |
Major 16-mosstep | M16ms | 16L | 834.8 ¢ to 872.7 ¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 16L + s | 872.7 ¢ to 887.0 ¢ |
Major 17-mosstep | M17ms | 17L | 887.0 ¢ to 927.3 ¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 17L + s | 927.3 ¢ to 939.1 ¢ |
Major 18-mosstep | M18ms | 18L | 939.1 ¢ to 981.8 ¢ | |
19-mosstep | Minor 19-mosstep | m19ms | 18L + s | 981.8 ¢ to 991.3 ¢ |
Major 19-mosstep | M19ms | 19L | 991.3 ¢ to 1036.4 ¢ | |
20-mosstep | Minor 20-mosstep | m20ms | 19L + s | 1036.4 ¢ to 1043.5 ¢ |
Major 20-mosstep | M20ms | 20L | 1043.5 ¢ to 1090.9 ¢ | |
21-mosstep | Minor 21-mosstep | m21ms | 20L + s | 1090.9 ¢ to 1095.7 ¢ |
Major 21-mosstep | M21ms | 21L | 1095.7 ¢ to 1145.5 ¢ | |
22-mosstep | Perfect 22-mosstep | P22ms | 21L + s | 1145.5 ¢ to 1147.8 ¢ |
Augmented 22-mosstep | A22ms | 22L | 1147.8 ¢ to 1200.0 ¢ | |
23-mosstep | Perfect 23-mosstep | P23ms | 22L + s | 1200.0 ¢ |
Generator chain
Bright gens | Scale degree | Abbrev. |
---|---|---|
44 | Augmented 21-mosdegree | A21md |
43 | Augmented 20-mosdegree | A20md |
42 | Augmented 19-mosdegree | A19md |
41 | Augmented 18-mosdegree | A18md |
40 | Augmented 17-mosdegree | A17md |
39 | Augmented 16-mosdegree | A16md |
38 | Augmented 15-mosdegree | A15md |
37 | Augmented 14-mosdegree | A14md |
36 | Augmented 13-mosdegree | A13md |
35 | Augmented 12-mosdegree | A12md |
34 | Augmented 11-mosdegree | A11md |
33 | Augmented 10-mosdegree | A10md |
32 | Augmented 9-mosdegree | A9md |
31 | Augmented 8-mosdegree | A8md |
30 | Augmented 7-mosdegree | A7md |
29 | Augmented 6-mosdegree | A6md |
28 | Augmented 5-mosdegree | A5md |
27 | Augmented 4-mosdegree | A4md |
26 | Augmented 3-mosdegree | A3md |
25 | Augmented 2-mosdegree | A2md |
24 | Augmented 1-mosdegree | A1md |
23 | Augmented 0-mosdegree | A0md |
22 | Augmented 22-mosdegree | A22md |
21 | Major 21-mosdegree | M21md |
20 | Major 20-mosdegree | M20md |
19 | Major 19-mosdegree | M19md |
18 | Major 18-mosdegree | M18md |
17 | Major 17-mosdegree | M17md |
16 | Major 16-mosdegree | M16md |
15 | Major 15-mosdegree | M15md |
14 | Major 14-mosdegree | M14md |
13 | Major 13-mosdegree | M13md |
12 | Major 12-mosdegree | M12md |
11 | Major 11-mosdegree | M11md |
10 | Major 10-mosdegree | M10md |
9 | Major 9-mosdegree | M9md |
8 | Major 8-mosdegree | M8md |
7 | Major 7-mosdegree | M7md |
6 | Major 6-mosdegree | M6md |
5 | Major 5-mosdegree | M5md |
4 | Major 4-mosdegree | M4md |
3 | Major 3-mosdegree | M3md |
2 | Major 2-mosdegree | M2md |
1 | Perfect 1-mosdegree | P1md |
0 | Perfect 0-mosdegree Perfect 23-mosdegree |
P0md P23md |
−1 | Perfect 22-mosdegree | P22md |
−2 | Minor 21-mosdegree | m21md |
−3 | Minor 20-mosdegree | m20md |
−4 | Minor 19-mosdegree | m19md |
−5 | Minor 18-mosdegree | m18md |
−6 | Minor 17-mosdegree | m17md |
−7 | Minor 16-mosdegree | m16md |
−8 | Minor 15-mosdegree | m15md |
−9 | Minor 14-mosdegree | m14md |
−10 | Minor 13-mosdegree | m13md |
−11 | Minor 12-mosdegree | m12md |
−12 | Minor 11-mosdegree | m11md |
−13 | Minor 10-mosdegree | m10md |
−14 | Minor 9-mosdegree | m9md |
−15 | Minor 8-mosdegree | m8md |
−16 | Minor 7-mosdegree | m7md |
−17 | Minor 6-mosdegree | m6md |
−18 | Minor 5-mosdegree | m5md |
−19 | Minor 4-mosdegree | m4md |
−20 | Minor 3-mosdegree | m3md |
−21 | Minor 2-mosdegree | m2md |
−22 | Diminished 1-mosdegree | d1md |
−23 | Diminished 23-mosdegree | d23md |
−24 | Diminished 22-mosdegree | d22md |
−25 | Diminished 21-mosdegree | d21md |
−26 | Diminished 20-mosdegree | d20md |
−27 | Diminished 19-mosdegree | d19md |
−28 | Diminished 18-mosdegree | d18md |
−29 | Diminished 17-mosdegree | d17md |
−30 | Diminished 16-mosdegree | d16md |
−31 | Diminished 15-mosdegree | d15md |
−32 | Diminished 14-mosdegree | d14md |
−33 | Diminished 13-mosdegree | d13md |
−34 | Diminished 12-mosdegree | d12md |
−35 | Diminished 11-mosdegree | d11md |
−36 | Diminished 10-mosdegree | d10md |
−37 | Diminished 9-mosdegree | d9md |
−38 | Diminished 8-mosdegree | d8md |
−39 | Diminished 7-mosdegree | d7md |
−40 | Diminished 6-mosdegree | d6md |
−41 | Diminished 5-mosdegree | d5md |
−42 | Diminished 4-mosdegree | d4md |
−43 | Diminished 3-mosdegree | d3md |
−44 | Diminished 2-mosdegree | d2md |
Modes
UDP | Cyclic order |
Step pattern |
Scale degree (mosdegree) | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |||
22|0 | 1 | LLLLLLLLLLLLLLLLLLLLLLs | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Aug. | Perf. |
21|1 | 2 | LLLLLLLLLLLLLLLLLLLLLsL | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Perf. |
20|2 | 3 | LLLLLLLLLLLLLLLLLLLLsLL | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Perf. | Perf. |
19|3 | 4 | LLLLLLLLLLLLLLLLLLLsLLL | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Perf. | Perf. |
18|4 | 5 | LLLLLLLLLLLLLLLLLLsLLLL | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Perf. | Perf. |
17|5 | 6 | LLLLLLLLLLLLLLLLLsLLLLL | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Min. | Perf. | Perf. |
16|6 | 7 | LLLLLLLLLLLLLLLLsLLLLLL | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. |
15|7 | 8 | LLLLLLLLLLLLLLLsLLLLLLL | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. |
14|8 | 9 | LLLLLLLLLLLLLLsLLLLLLLL | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. |
13|9 | 10 | LLLLLLLLLLLLLsLLLLLLLLL | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. |
12|10 | 11 | LLLLLLLLLLLLsLLLLLLLLLL | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. |
11|11 | 12 | LLLLLLLLLLLsLLLLLLLLLLL | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. |
10|12 | 13 | LLLLLLLLLLsLLLLLLLLLLLL | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. |
9|13 | 14 | LLLLLLLLLsLLLLLLLLLLLLL | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. |
8|14 | 15 | LLLLLLLLsLLLLLLLLLLLLLL | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. |
7|15 | 16 | LLLLLLLsLLLLLLLLLLLLLLL | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. |
6|16 | 17 | LLLLLLsLLLLLLLLLLLLLLLL | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. |
5|17 | 18 | LLLLLsLLLLLLLLLLLLLLLLL | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. |
4|18 | 19 | LLLLsLLLLLLLLLLLLLLLLLL | Perf. | Perf. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. |
3|19 | 20 | LLLsLLLLLLLLLLLLLLLLLLL | Perf. | Perf. | Maj. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. |
2|20 | 21 | LLsLLLLLLLLLLLLLLLLLLLL | Perf. | Perf. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. |
1|21 | 22 | LsLLLLLLLLLLLLLLLLLLLLL | Perf. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. |
0|22 | 23 | sLLLLLLLLLLLLLLLLLLLLLL | Perf. | Dim. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. |
Scale tree
Generator(edo) | Cents | Step ratio | Comments(always proper) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
1\23 | 52.174 | 1147.826 | 1:1 | 1.000 | Equalized 22L 1s | |||||
6\137 | 52.555 | 1147.445 | 6:5 | 1.200 | ||||||
5\114 | 52.632 | 1147.368 | 5:4 | 1.250 | ||||||
9\205 | 52.683 | 1147.317 | 9:7 | 1.286 | ||||||
4\91 | 52.747 | 1147.253 | 4:3 | 1.333 | Supersoft 22L 1s | |||||
11\250 | 52.800 | 1147.200 | 11:8 | 1.375 | ||||||
7\159 | 52.830 | 1147.170 | 7:5 | 1.400 | ||||||
10\227 | 52.863 | 1147.137 | 10:7 | 1.429 | ||||||
3\68 | 52.941 | 1147.059 | 3:2 | 1.500 | Soft 22L 1s | |||||
11\249 | 53.012 | 1146.988 | 11:7 | 1.571 | ||||||
8\181 | 53.039 | 1146.961 | 8:5 | 1.600 | ||||||
13\294 | 53.061 | 1146.939 | 13:8 | 1.625 | ||||||
5\113 | 53.097 | 1146.903 | 5:3 | 1.667 | Semisoft 22L 1s | |||||
12\271 | 53.137 | 1146.863 | 12:7 | 1.714 | ||||||
7\158 | 53.165 | 1146.835 | 7:4 | 1.750 | ||||||
9\203 | 53.202 | 1146.798 | 9:5 | 1.800 | ||||||
2\45 | 53.333 | 1146.667 | 2:1 | 2.000 | Basic 22L 1s | |||||
9\202 | 53.465 | 1146.535 | 9:4 | 2.250 | ||||||
7\157 | 53.503 | 1146.497 | 7:3 | 2.333 | ||||||
12\269 | 53.532 | 1146.468 | 12:5 | 2.400 | ||||||
5\112 | 53.571 | 1146.429 | 5:2 | 2.500 | Semihard 22L 1s | |||||
13\291 | 53.608 | 1146.392 | 13:5 | 2.600 | ||||||
8\179 | 53.631 | 1146.369 | 8:3 | 2.667 | ||||||
11\246 | 53.659 | 1146.341 | 11:4 | 2.750 | ||||||
3\67 | 53.731 | 1146.269 | 3:1 | 3.000 | Hard 22L 1s | |||||
10\223 | 53.812 | 1146.188 | 10:3 | 3.333 | ||||||
7\156 | 53.846 | 1146.154 | 7:2 | 3.500 | ||||||
11\245 | 53.878 | 1146.122 | 11:3 | 3.667 | ||||||
4\89 | 53.933 | 1146.067 | 4:1 | 4.000 | Superhard 22L 1s | |||||
9\200 | 54.000 | 1146.000 | 9:2 | 4.500 | ||||||
5\111 | 54.054 | 1145.946 | 5:1 | 5.000 | ||||||
6\133 | 54.135 | 1145.865 | 6:1 | 6.000 | ||||||
1\22 | 54.545 | 1145.455 | 1:0 | → ∞ | Collapsed 22L 1s |