1L 6s

From Xenharmonic Wiki
Jump to navigation Jump to search
↑ 1L 5s 2L 5s ↗
1L 6s 2L 6s →
↓ 1L 7s 2L 7s ↘
┌╥┬┬┬┬┬┬┐
│║│││││││
│││││││││
└┴┴┴┴┴┴┴┘
Scale structure
Step pattern Lssssss
ssssssL
Equave 2/1 (1200.0¢)
Period 2/1 (1200.0¢)
Generator size
Bright 6\7 to 1\1 (1028.6¢ to 1200.0¢)
Dark 0\1 to 1\7 (0.0¢ to 171.4¢)
Related MOS scales
Parent 1L 5s
Sister 6L 1s
Daughters 7L 1s, 1L 7s
Neutralized 2L 5s
2-Flought 8L 6s, 1L 13s
Equal tunings
Equalized (L:s = 1:1) 6\7 (1028.6¢)
Supersoft (L:s = 4:3) 19\22 (1036.4¢)
Soft (L:s = 3:2) 13\15 (1040.0¢)
Semisoft (L:s = 5:3) 20\23 (1043.5¢)
Basic (L:s = 2:1) 7\8 (1050.0¢)
Semihard (L:s = 5:2) 15\17 (1058.8¢)
Hard (L:s = 3:1) 8\9 (1066.7¢)
Superhard (L:s = 4:1) 9\10 (1080.0¢)
Collapsed (L:s = 1:0) 1\1 (1200.0¢)

1L 6s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 1 large step and 6 small steps, repeating every octave. Generators that produce this scale range from 1028.6¢ to 1200¢, or from 0¢ to 171.4¢.

Name

TAMNAMS suggests the temperament-agnostic name onyx as the name of 1L 6s. The name derives from several naming puns/reasonings:

  • The name sounds like its step counts of one large step and six small steps.
  • Onyxes come in different colors and types, which is a metaphor for this scale's generator range being quite large and containing the generator ranges of other MOS scales, such as 7L 1s, 8L 1s, and 9L 1s.
  • Building on the observation that it is the 7-note (heptatonic) MOS that is the ancestor of all xL 1s scales with x>6, the name "onyx" also sounds similar to "one x", as in 1 large step and x small steps.
  • The name "onyx" is also supposed to be vaguely reminiscent of "anti-archaeotonic" as "chi" (the greek letter) is written like an "x" (this is related to why "christmas" is abbreviated sometimes as "X-mas") and the letters "o" and "n" and their sounds are also present in "archaeotonic", and "x" is vaguely reminiscent of negation and multiplication. There is also something like a "y" sound in "archaeotonic" in the "aeo" part.

Scale properties

Intervals

The intervals of 1L 6s are named after the number of mossteps (L and s) they subtend. Each interval, apart from the root and octave (perfect 0-mosstep and perfect 7-mosstep), has two varieties, or sizes, each. Interval varieties are named major and minor for the large and small sizes, respectively, and augmented, perfect, and diminished for the scale's generators.

Intervals of 1L 6s
Intervals Steps
subtended
Range in cents
Generic Specific Abbrev.
0-mosstep Perfect 0-mosstep P0ms 0 0.0¢
1-mosstep Perfect 1-mosstep P1ms s 0.0¢ to 171.4¢
Augmented 1-mosstep A1ms L 171.4¢ to 1200.0¢
2-mosstep Minor 2-mosstep m2ms 2s 0.0¢ to 342.9¢
Major 2-mosstep M2ms L + s 342.9¢ to 1200.0¢
3-mosstep Minor 3-mosstep m3ms 3s 0.0¢ to 514.3¢
Major 3-mosstep M3ms L + 2s 514.3¢ to 1200.0¢
4-mosstep Minor 4-mosstep m4ms 4s 0.0¢ to 685.7¢
Major 4-mosstep M4ms L + 3s 685.7¢ to 1200.0¢
5-mosstep Minor 5-mosstep m5ms 5s 0.0¢ to 857.1¢
Major 5-mosstep M5ms L + 4s 857.1¢ to 1200.0¢
6-mosstep Diminished 6-mosstep d6ms 6s 0.0¢ to 1028.6¢
Perfect 6-mosstep P6ms L + 5s 1028.6¢ to 1200.0¢
7-mosstep Perfect 7-mosstep P7ms L + 6s 1200.0¢

Generator chain

A chain of bright generators, each a perfect 6-mosstep, produces the following scale degrees. A chain of 7 bright generators contains the scale degrees of one of the modes of 1L 6s. Expanding the chain to 8 scale degrees produces the modes of either 7L 1s (for soft-of-basic tunings) or 1L 7s (for hard-of-basic tunings).

Generator chain of 1L 6s
Bright gens Scale Degree - 7 Augmented 0-mosdegree A0md
6 Augmented 1-mosdegree A1md
5 Major 2-mosdegree M2md
4 Major 3-mosdegree M3md
3 Major 4-mosdegree M4md
2 Major 5-mosdegree M5md
1 Perfect 6-mosdegree P6md
0 Perfect 0-mosdegree
Perfect 7-mosdegree
P0md
P7md
-1 Perfect 1-mosdegree P1md
-2 Minor 2-mosdegree m2md
-3 Minor 3-mosdegree m3md
-4 Minor 4-mosdegree m4md
-5 Minor 5-mosdegree m5md
-6 Diminished 6-mosdegree d6md
-7 Diminished 7-mosdegree d7md

Modes

Scale degrees of the modes of 1L 6s 
UDP Cyclic
order
Step
pattern
Scale degree (mosdegree)
0 1 2 3 4 5 6 7
6|0 1 Lssssss Perf. Aug. Maj. Maj. Maj. Maj. Perf. Perf.
5|1 7 sLsssss Perf. Perf. Maj. Maj. Maj. Maj. Perf. Perf.
4|2 6 ssLssss Perf. Perf. Min. Maj. Maj. Maj. Perf. Perf.
3|3 5 sssLsss Perf. Perf. Min. Min. Maj. Maj. Perf. Perf.
2|4 4 ssssLss Perf. Perf. Min. Min. Min. Maj. Perf. Perf.
1|5 3 sssssLs Perf. Perf. Min. Min. Min. Min. Perf. Perf.
0|6 2 ssssssL Perf. Perf. Min. Min. Min. Min. Dim. Perf.


Theory

Low harmonic entropy scales

There is one notable harmonic entropy minimum: porcupine, in which the generator is around 150¢ to 170¢, two generators make a 6/5 (315.6¢), and three make a 4/3 (498¢).

Scale tree

Scale Tree and Tuning Spectrum of 1L 6s
Generator(edo) Cents Step ratio Comments
Bright Dark L:s Hardness
6\7 1028.571 171.429 1:1 1.000 Equalized 1L 6s
31\36 1033.333 166.667 6:5 1.200
25\29 1034.483 165.517 5:4 1.250
44\51 1035.294 164.706 9:7 1.286
19\22 1036.364 163.636 4:3 1.333 Supersoft 1L 6s
51\59 1037.288 162.712 11:8 1.375 Porcupine/Porcupinefish
32\37 1037.838 162.162 7:5 1.400
45\52 1038.462 161.538 10:7 1.429
13\15 1040.000 160.000 3:2 1.500 Soft 1L 6s
46\53 1041.509 158.491 11:7 1.571 Hemikleismic
33\38 1042.105 157.895 8:5 1.600
53\61 1042.623 157.377 13:8 1.625 Wilson Golden 1 (1042.4790¢)
20\23 1043.478 156.522 5:3 1.667 Semisoft 1L 6s
47\54 1044.444 155.556 12:7 1.714
27\31 1045.161 154.839 7:4 1.750 Nusecond
34\39 1046.154 153.846 9:5 1.800
7\8 1050.000 150.000 2:1 2.000 Basic 1L 6s
Scales with tunings softer than this are proper
29\33 1054.545 145.455 9:4 2.250
22\25 1056.000 144.000 7:3 2.333
37\42 1057.143 142.857 12:5 2.400
15\17 1058.824 141.176 5:2 2.500 Semihard 1L 6s
Progression (incomplete)
38\43 1060.465 139.535 13:5 2.600 Golden jerome (1060.7571¢)
23\26 1061.538 138.462 8:3 2.667
31\35 1062.857 137.143 11:4 2.750
8\9 1066.667 133.333 3:1 3.000 Hard 1L 6s
25\28 1071.429 128.571 10:3 3.333
17\19 1073.684 126.316 7:2 3.500 Negri (incomplete)
26\29 1075.862 124.138 11:3 3.667
9\10 1080.000 120.000 4:1 4.000 Superhard 1L 6s
19\21 1085.714 114.286 9:2 4.500 Miracle (incomplete)
10\11 1090.909 109.091 5:1 5.000
11\12 1100.000 100.000 6:1 6.000 Passion, ripple (incomplete)
1\1 1200.000 0.000 1:0 → ∞ Collapsed 1L 6s