Quintile family
- This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.
The quintile family of temperaments tempers out the quintile comma (monzo: [-28 25 -5⟩, ratio: 847 288 609 443 / 838 860 800 000).
Quintile
Quintile reaches the interval class of 5 by five perfect fifths (i.e. a major seventh) plus two periods of 1/5-octave; this two-period interval represents a grave fourth of 320/243, that is, a perfect fourth minus a syntonic comma. Quintile is a member of the syntonic–diatonic equivalence continuum with n = 5, so it equates a Pythagorean limma with a stack of five syntonic commas.
The temperament was first introduced by Mike Battaglia in 2011 along with other temperaments in the continuum mentioned above[1]. It did not get named until 2012, when Petr Pařízek called it pental[2]. In 2024, the community has decided to rename it for fear of confusion with the more common usage of the term pental to refer to the 5-limit.
Subgroup: 2.3.5
Comma list: 847288609443/838860800000
Mapping: [⟨5 0 -28], ⟨0 1 5]]
- mapping generators: ~59049/51200, ~3
- CTE: ~59049/51200 = 240.000, ~3/2 = 701.317 (~81/80 = 18.683)
- error map: ⟨0.000 -0.638 +0.274]
- POTE: ~59049/51200 = 240.000, ~3/2 = 701.210 (~81/80 = 18.790)
- error map: ⟨0.000 -0.745 -0.265]
Optimal ET sequence: 5, 60, 65, 190, 255, 575, 830b, 1405b
Badness (Smith): 0.240050
Pentacloud
Pentacloud can be described as the 5 & 60 temperament. It identifies the period as ~8/7, tempering out the cloudy comma 16807/16384 and the sensamagic comma 245/243 in the 7-limit.
Subgroup: 2.3.5.7
Comma list: 245/243, 16807/16384
Mapping: [⟨5 0 -28 14], ⟨0 1 5 0]]
- CTE: ~8/7 = 240.000, ~3/2 = 701.317 (~81/80 = 18.683)
- error map: ⟨0.000 -0.638 +0.274 -8.826]
- POTE: ~8/7 = 240.000, ~3/2 = 700.548 (~81/80 = 19.452)
- error map: ⟨0.000 -1.407 -3.574 -8.826]
Optimal ET sequence: 5, 60, 65, 125d, 185cdd
Badness (Smith): 0.120942
11-limit
Subgroup: 2.3.5.7.11
Comma list: 245/243, 385/384, 3087/3025
Mapping: [⟨5 0 -28 14 49], ⟨0 1 5 0 -4]]
Optimal tunings:
- CTE: ~8/7 = 240.000, ~3/2 = 701.496 (~81/80 = 18.304)
- POTE: ~8/7 = 240.000, ~3/2 = 701.377 (~81/80 = 18.623)
Optimal ET sequence: 5, 60, 65
Badness (Smith): 0.093248
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 105/104, 144/143, 245/243, 3087/3025
Mapping: [⟨5 0 -28 14 49 -29], ⟨0 1 5 0 -4 6]]
Optimal tunings:
- CTE: ~8/7 = 240.000, ~3/2 = 701.085 (~81/80 = 18.915)
- POTE: ~8/7 = 240.000, ~3/2 = 700.996 (~81/80 = 19.004)
Optimal ET sequence: 5, 60, 65, 125de, 190ddef
Badness (Smith): 0.067549
Hemiquintile
Hemiquintile (formerly hemipental) can be described as 125 & 130 and tempers out the cataharry comma, 19683/19600 in the 7-limit, as well as 589824/588245 (hewuermera, satribiru-agu) and 5250987/5242880 (mitonisma, laquadzo-agu).
Subgroup: 2.3.5.7
Comma list: 19683/19600, 589824/588245
Mapping: [⟨5 0 -28 18], ⟨0 2 10 -1]]
- mapping generators: ~147/128, ~140/81
- CTE: ~147/128 = 240.0000, ~140/81 = 950.6620 (~1029/1024 = 9.3380)
- error map: ⟨0.000 -0.6311 +0.3059 +0.5121]
- POTE: ~147/128 = 240.0000, ~140/81 = 950.6536 (~1029/1024 = 9.3464)
- error map: ⟨0.000 -0.6473 +0.2249 +0.5202]
Optimal ET sequence: 125, 130, 255, 385
Badness (Smith): 0.104163
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 8019/8000, 180224/180075
Mapping: [⟨5 0 -28 18 -54], ⟨0 2 10 -1 18]]
Optimal tunings:
- CTE: ~147/128 = 240.0000, ~140/81 = 950.6430 (~176/175 = 9.3570)
- POTE: ~147/128 = 240.0000, ~140/81 = 950.6341 (~176/175 = 9.3659)
Optimal ET sequence: 125, 130, 255, 385, 640
Badness (Smith): 0.047624
Hemiquintilis
Subgroup: 2.3.5.7.11.13
Comma list: 351/350, 540/539, 676/675, 124215/123904
Mapping: [⟨5 0 -28 18 -54 34], ⟨0 2 10 -1 18 13]]
Optimal tunings:
- CTE: ~147/128 = 240.0000, ~26/15 = 950.6775 (~176/175 = 9.3225)
- POTE: ~147/128 = 240.0000, ~26/15 = 950.6593 (~176/175 = 9.3407)
Optimal ET sequence: 125f, 130, 255f, 385f
Badness (Smith): 0.033542
Hemiquint
Subgroup: 2.3.5.7.11.13
Comma list: 540/539, 1575/1573, 4096/4095, 8019/8000
Mapping: [⟨5 0 -28 18 -54 34], ⟨0 2 10 -1 18 -13]]
Optimal tunings:
- CTE: ~147/128 = 240.0000, ~140/81 = 950.6607 (~144/143 = 9.3393)
- POTE: ~147/128 = 240.0000, ~140/81 = 950.6677 (~144/143 = 9.3323)
Optimal ET sequence: 125, 130, 255, 385, 515
Badness (Smith): 0.041043
Decile
Decile (formerly decal) can be described as 130 & 190 and tempers out the varunisma 321489/320000 in the 7-limit, as well as the triwellisma 235298/234375, the breeze comma 2460375/2458624, and the linus comma [11 -10 -10 10⟩.
Subgroup: 2.3.5.7
Comma list: 235298/234375, 321489/320000
Mapping: [⟨10 0 -56 -67], ⟨0 1 5 6]]
- mapping generators: ~15/14, ~3
- CTE: ~15/14 = 120.000, ~3/2 = 701.390 (~81/80 = 18.610)
- error map: ⟨0.000 -0.565 +0.639 -0.483]
- POTE: ~15/14 = 120.000, ~3/2 = 701.303 (~81/80 = 18.697)
- error map: ⟨0.000 -0.652 +0.200 -1.009]
Optimal ET sequence: 60, 130, 320, 450, 770d
Badness (Smith): 0.104859
11-limit
Subgroup: 2.3.5.7.11
Comma list: 441/440, 8019/8000, 234375/234256
Mapping: [⟨10 0 -56 -67 -108], ⟨0 1 5 6 9]]
Optimal tunings:
- CTE: ~15/14 = 120.000, ~3/2 = 701.336 (~99/98 = 18.664)
- POTE: ~15/14 = 120.000, ~3/2 = 701.240 (~99/98 = 18.760)
Optimal ET sequence: 60e, 130, 190, 320
Badness (Smith): 0.040633
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 441/440, 729/728, 1001/1000, 4225/4224
Mapping: [⟨10 0 -56 -67 -108 37], ⟨0 1 5 6 9 0]]
Optimal tunings:
- CTE: ~15/14 = 120.000, ~3/2 = 701.336 (~91/90 = 18.664)
- POTE: ~15/14 = 120.000, ~3/2 = 701.252 (~91/90 = 18.748)
Optimal ET sequence: 60e, 130, 190, 320
Badness (Smith): 0.023948