1381edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 1380edo 1381edo 1382edo →
Prime factorization 1381 (prime)
Step size 0.868936¢ 
Fifth 808\1381 (702.1¢)
Semitones (A1:m2) 132:103 (114.7¢ : 89.5¢)
Consistency limit 9
Distinct consistency limit 9

1381 equal divisions of the octave (abbreviated 1381edo or 1381ed2), also called 1381-tone equal temperament (1381tet) or 1381 equal temperament (1381et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 1381 equal parts of about 0.869 ¢ each. Each step represents a frequency ratio of 21/1381, or the 1381st root of 2.

Theory

1381edo is consistent to the 9-odd-limit, tempering out 2401/2400, 29360128/29296875 and [33 -37 5 5 in the 7-limit. It is strong in the 2.3.7.23.29 subgroup, tempering out 60817408/60761421, 5888/5887, 121025149/120932352 and 661153497088/660379746861. Using the 2.3.7.23.37 subgroup, it tempers out 1702/1701. The equal temperament supports quasiorwell.

Odd harmonics

Approximation of odd harmonics in 1381edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +0.145 +0.363 +0.037 +0.290 -0.413 -0.267 -0.361 +0.186 -0.337 +0.182 -0.034
Relative (%) +16.7 +41.7 +4.3 +33.4 -47.5 -30.7 -41.6 +21.4 -38.8 +21.0 -3.9
Steps
(reduced)
2189
(808)
3207
(445)
3877
(1115)
4378
(235)
4777
(634)
5110
(967)
5395
(1252)
5645
(121)
5866
(342)
6066
(542)
6247
(723)

Subsets and supersets

1381edo is the 221st prime edo. 2762edo, which doubles it, gives a good correction to the harmonic 11.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [2189 -1381 [1381 2189]] −0.0457 0.0457 5.26
2.3.5 [-16 35 -17, [93 -3 -38 [1381 2189 3207]] −0.0825 0.0641 7.38
2.3.5.7 2401/2400, 29360128/29296875, [33 -37 5 5 [1381 2189 3207 3877]] −0.0652 0.0631 7.26

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 210\1381 182.476 10/9 Minortone
1 312\1381 271.108 1024/875 Quasiorwell

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct