395edo
← 394edo | 395edo | 396edo → |
395 equal divisions of the octave (abbreviated 395edo or 395ed2), also called 395-tone equal temperament (395tet) or 395 equal temperament (395et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 395 equal parts of about 3.04 ¢ each. Each step represents a frequency ratio of 21/395, or the 395th root of 2.
Theory
395edo is consistent to the 9-odd-limit. The equal temperament tempers out 32805/32768 in the 5-limit; 4375/4374, 65625/65536, 14348907/14336000, and 40500000/40353607 in the 7-limit; supporting gold and pontiac.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.18 | -0.49 | +0.29 | -1.44 | +0.99 | +1.37 | +0.21 | +0.59 | +0.30 | +0.28 |
Relative (%) | +0.0 | -6.0 | -16.2 | +9.5 | -47.5 | +32.6 | +45.2 | +6.9 | +19.3 | +9.8 | +9.2 | |
Steps (reduced) |
395 (0) |
626 (231) |
917 (127) |
1109 (319) |
1366 (181) |
1462 (277) |
1615 (35) |
1678 (98) |
1787 (207) |
1919 (339) |
1957 (377) |
Subsets and supersets
Since 395 factors into 5 × 79, 395edo has 5edo and 79edo as its subset edos.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-626 395⟩ | [⟨395 626]] | 0.0577 | 0.0577 | 1.90 |
2.3.5 | 32805/32768, [-34 -43 44⟩ | [⟨395 626 917]] | 0.1089 | 0.0864 | 2.84 |
2.3.5.7 | 4375/4374, 32805/32768, 40500000/40353607 | [⟨395 626 917 1109]] | 0.0560 | 0.1183 | 3.89 |
2.3.5.7.11 | 1375/1372, 4375/4374, 32805/32768, 35937/35840 | [⟨395 626 917 1109 1366]] | 0.1283 | 0.1792 | 5.90 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated Ratio* |
Temperaments |
---|---|---|---|---|
1 | 164\395 | 498.23 | 4/3 | Pontiac |
* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct