23ed5/3
Jump to navigation
Jump to search
Prime factorization
23 (prime)
Step size
38.4504¢
Octave
31\23ed5/3 (1191.96¢)
Twelfth
49\23ed5/3 (1884.07¢)
Consistency limit
4
Distinct consistency limit
4
← 22ed5/3 | 23ed5/3 | 24ed5/3 → |
23ed5/3 is the equal division of the just major sixth into 23 parts of 38.4504 cents each, corresponding to 31.2091edo. It is very closely related to the slender temperament.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -8.0 | -17.9 | -16.1 | -17.9 | +12.5 | +14.8 | +14.3 | +2.7 | +12.5 | +1.3 | +4.5 |
Relative (%) | -20.9 | -46.5 | -41.8 | -46.5 | +32.6 | +38.5 | +37.3 | +7.0 | +32.6 | +3.4 | +11.7 | |
Steps (reduced) |
31 (8) |
49 (3) |
62 (16) |
72 (3) |
81 (12) |
88 (19) |
94 (2) |
99 (7) |
104 (12) |
108 (16) |
112 (20) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -18.7 | +6.8 | +2.7 | +6.3 | +16.7 | -5.4 | +16.4 | +4.5 | -3.1 | -6.7 | -6.8 |
Relative (%) | -48.7 | +17.6 | +7.0 | +16.4 | +43.4 | -13.9 | +42.6 | +11.7 | -8.0 | -17.5 | -17.6 | |
Steps (reduced) |
115 (0) |
119 (4) |
122 (7) |
125 (10) |
128 (13) |
130 (15) |
133 (18) |
135 (20) |
137 (22) |
139 (1) |
141 (3) |
Intervals
Degrees | Hexadecatonic | Cents | |
---|---|---|---|
1 | D | 38.4504 | |
2 | D#/Eb | Dp/E\\ | 76.9008 |
3 | E | 115.3511 | |
4 | F | 153.8015 | |
5 | F#/Gb~0b | Fp/G\\~0\\ | 192.2519 |
6 | G~0 | 230.7023 | |
7 | 1 | 269.15235 | |
8 | 1#/2b | 1p/2\\ | 307.603 |
9 | 2 | 346.0534 | |
10 | 3 | 384.5038 | |
11 | 3#/4(b) | 3p\4(//) | 422.9542 |
12 | 4(#)/5b | 4(p)/5\\ | 461.40455 |
13 | 5 | 499.8549 | |
14 | 6 | 538.3053 | |
15 | 6#/7b | 6p/7\\ | 576.7557 |
16 | 7 | 615.2061 | |
17 | 8 | 653.6564 | |
18 | 8#/9b | 8p/9\\ | 692.1068 |
19 | 9 | 730.5572 | |
20 | A | 769.0076 | |
21 | A#/Bb | Ap\B\\ | 807.45795 |
22 | B | 845.9083 | |
23 | C | 884.3587 |