47edf
Jump to navigation
Jump to search
Prime factorization
47 (prime)
Step size
14.9352¢
Octave
80\47edf (1194.82¢)
Twelfth
127\47edf (1896.77¢)
Consistency limit
2
Distinct consistency limit
2
← 46edf | 47edf | 48edf → |
47EDF is the equal division of the just perfect fifth into 47 parts of 14.9352 cents each, corresponding to 80.3470 edo (similar to every third step of 241edo).
It is related to the microtemperament which tempers out |39 -39 -47 47> (1.82802 cents) in the 7-limit, which is supported by 482, 643, 1125, 1205, 1848, 2330, 2973, 3053, and 4178 EDOs.
Related regular temperaments
7-limit 1205&1848&2330
Comma: |39 -39 -47 47>
POTE generators: ~5/4 = 386.3319, ~3796875/3764768 = 14.9354
Mapping: [<1 1 0 0|, <0 47 0 39|, <0 0 1 1|]
EDOs: 80, 161, 482, 562, 643, 723, 1125, 1205, 1366, 1848, 2330, 2973, 3053, 4178, 6026
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -5.18 | -5.18 | +4.57 | +6.57 | +4.57 | +6.53 | -0.61 | +4.57 | +1.39 | +0.67 | -0.61 |
Relative (%) | -34.7 | -34.7 | +30.6 | +44.0 | +30.6 | +43.7 | -4.1 | +30.6 | +9.3 | +4.5 | -4.1 | |
Steps (reduced) |
80 (33) |
127 (33) |
161 (20) |
187 (46) |
208 (20) |
226 (38) |
241 (6) |
255 (20) |
267 (32) |
278 (43) |
288 (6) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.77 | +1.35 | +1.39 | -5.80 | -6.21 | -0.61 | -4.61 | -3.79 | +1.35 | -4.51 | -6.79 |
Relative (%) | -31.9 | +9.0 | +9.3 | -38.8 | -41.6 | -4.1 | -30.8 | -25.4 | +9.0 | -30.2 | -45.5 | |
Steps (reduced) |
297 (15) |
306 (24) |
314 (32) |
321 (39) |
328 (46) |
335 (6) |
341 (12) |
347 (18) |
353 (24) |
358 (29) |
363 (34) |