482edo
Jump to navigation
Jump to search
Prime factorization
2 × 241
Step size
2.48963¢
Fifth
282\482 (702.075¢) (→141\241)
Semitones (A1:m2)
46:36 (114.5¢ : 89.63¢)
Consistency limit
9
Distinct consistency limit
9
← 481edo | 482edo | 483edo → |
482 equal divisions of the octave (482edo), or 482-tone equal temperament (482tet), 482 equal temperament (482et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 482 equal parts of about 2.49 ¢ each.
Theory
Prime harmonics with less than 17% (1 standard deviation error) in 482edo are 3, 5, 7, 17, 31, 37. 11 and 13 have rather large errors, but they are reasonable to work with.
In the 7-limit, 482edo provides excellent tuning for the tertiaseptal temperament.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | absolute (¢) | +0.00 | +0.12 | -0.42 | -0.36 | -1.11 | +0.97 | -0.39 | +1.24 | -0.89 | +1.13 | +0.19 |
relative (%) | +0 | +5 | -17 | -15 | -45 | +39 | -16 | +50 | -36 | +45 | +8 | |
Steps (reduced) |
482 (0) |
764 (282) |
1119 (155) |
1353 (389) |
1667 (221) |
1784 (338) |
1970 (42) |
2048 (120) |
2180 (252) |
2342 (414) |
2388 (460) |
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3.5 | [24 -21 4⟩, [-59 5 22⟩ | [⟨482 764 1119]] | +0.0353 | 0.0587 | 4.33 |
2.3.5.7 | 2401/2400, 65625/65536, [8 -20 9 1⟩ | [⟨482 764 1119 1353]] | +0.0587 | 0.1018 | 4.09 |
2.3.5.7.11 | 2401/2400, 9801/9800, 19712/19683, 65625/65536 | [⟨482 764 1119 1353 1667]] | +0.1111 | 0.1389 | 5.58 |
2.3.5.7.11.13 | 676/675, 1001/1000, 1716/1715, 10648/10647, 65625/65536 | [⟨482 764 1119 1353 1667 1783]] (482f) | +0.1612 | 0.1692 | 6.80 |
2.3.5.7.11.13 | 625/624, 847/845, 2401/2400, 9801/9800, 35750/35721 | [⟨482 764 1119 1353 1667 1784]] (482) | +0.0491 | 0.1880 | 7.55 |