# 482edo

 ← 481edo 482edo 483edo →
Prime factorization 2 × 241
Step size 2.48963¢
Fifth 282\482 (702.075¢) (→141\241)
Semitones (A1:m2) 46:36 (114.5¢ : 89.63¢)
Consistency limit 9
Distinct consistency limit 9

482 equal divisions of the octave (abbreviated 482edo or 482ed2), also called 482-tone equal temperament (482tet) or 482 equal temperament (482et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 482 equal parts of about 2.49 ¢ each. Each step represents a frequency ratio of 21/482, or the 482nd root of 2.

## Theory

482edo has good approximations of harmonics 3, 5, 7, 17, 31, and 37. 11 and 13 have rather large errors, but they are reasonable to work with.

In the 7-limit, 482edo provides excellent tuning for the tertiaseptal temperament.

### Prime harmonics

Approximation of prime harmonics in 482edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.12 -0.42 -0.36 -1.11 +0.97 -0.39 +1.24 -0.89 +1.13 +0.19
Relative (%) +0.0 +4.8 -16.9 -14.5 -44.6 +38.8 -15.7 +49.9 -35.7 +45.3 +7.7
Steps
(reduced)
482
(0)
764
(282)
1119
(155)
1353
(389)
1667
(221)
1784
(338)
1970
(42)
2048
(120)
2180
(252)
2342
(414)
2388
(460)

### Subsets and supersets

Since 482 factors into 2 × 241, 482edo contains 2edo and 241edo as subsets.

## Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3.5 [24 -21 4, [-59 5 22 [482 764 1119]] +0.0353 0.0587 4.33
2.3.5.7 2401/2400, 65625/65536, [8 -20 9 1 [482 764 1119 1353]] +0.0587 0.1018 4.09
2.3.5.7.11 2401/2400, 9801/9800, 19712/19683, 65625/65536 [482 764 1119 1353 1667]] +0.1111 0.1389 5.58
2.3.5.7.11.13 676/675, 1001/1000, 1716/1715, 10648/10647, 65625/65536 [482 764 1119 1353 1667 1783]] (482f) +0.1612 0.1692 6.80
2.3.5.7.11.13 625/624, 847/845, 2401/2400, 9801/9800, 35750/35721 [482 764 1119 1353 1667 1784]] (482) +0.0491 0.1880 7.55