482edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 481edo 482edo 483edo →
Prime factorization 2 × 241
Step size 2.48963¢ 
Fifth 282\482 (702.075¢) (→141\241)
Semitones (A1:m2) 46:36 (114.5¢ : 89.63¢)
Consistency limit 9
Distinct consistency limit 9

482 equal divisions of the octave (abbreviated 482edo or 482ed2), also called 482-tone equal temperament (482tet) or 482 equal temperament (482et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 482 equal parts of about 2.49 ¢ each. Each step represents a frequency ratio of 21/482, or the 482nd root of 2.

Theory

482edo has good approximations of harmonics 3, 5, 7, 17, 31, and 37. 11 and 13 have rather large errors, but they are reasonable to work with.

In the 7-limit, 482edo provides excellent tuning for the tertiaseptal temperament.

Prime harmonics

Approximation of prime harmonics in 482edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.12 -0.42 -0.36 -1.11 +0.97 -0.39 +1.24 -0.89 +1.13 +0.19
Relative (%) +0.0 +4.8 -16.9 -14.5 -44.6 +38.8 -15.7 +49.9 -35.7 +45.3 +7.7
Steps
(reduced)
482
(0)
764
(282)
1119
(155)
1353
(389)
1667
(221)
1784
(338)
1970
(42)
2048
(120)
2180
(252)
2342
(414)
2388
(460)

Subsets and supersets

Since 482 factors into 2 × 241, 482edo contains 2edo and 241edo as subsets.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3.5 [24 -21 4, [-59 5 22 [482 764 1119]] +0.0353 0.0587 4.33
2.3.5.7 2401/2400, 65625/65536, [8 -20 9 1 [482 764 1119 1353]] +0.0587 0.1018 4.09
2.3.5.7.11 2401/2400, 9801/9800, 19712/19683, 65625/65536 [482 764 1119 1353 1667]] +0.1111 0.1389 5.58
2.3.5.7.11.13 676/675, 1001/1000, 1716/1715, 10648/10647, 65625/65536 [482 764 1119 1353 1667 1783]] (482f) +0.1612 0.1692 6.80
2.3.5.7.11.13 625/624, 847/845, 2401/2400, 9801/9800, 35750/35721 [482 764 1119 1353 1667 1784]] (482) +0.0491 0.1880 7.55